zoukankan      html  css  js  c++  java
  • hdu 4049 Tourism Planning [ 状压dp ]

    传送门

    Tourism Planning

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1115    Accepted Submission(s): 482


    Problem Description
    Several friends are planning to take tourism during the next holiday. They have selected some places to visit. They have decided which place to start their tourism and in which order to visit these places. However, anyone can leave halfway during the tourism and will never back to the tourism again if he or she is not interested in the following places. And anyone can choose not to attend the tourism if he or she is not interested in any of the places.
    Each place they visited will cost every person certain amount of money. And each person has a positive value for each place, representing his or her interest in this place. To make things more complicated, if two friends visited a place together, they will get a non negative bonus because they enjoyed each other’s companion. If more than two friends visited a place together, the total bonus will be the sum of each pair of friends’ bonuses.
    Your task is to decide which people should take the tourism and when each of them should leave so that the sum of the interest plus the sum of the bonuses minus the total costs is the largest. If you can’t find a plan that have a result larger than 0, just tell them to STAY HOME.
     
    Input
    There are several cases. Each case starts with a line containing two numbers N and M ( 1<=N<=10, 1<=M<=10). N is the number of friends and M is the number of places. The next line will contain M integers Pi (1<=i<=M) , 1<=Pi<=1000, representing how much it costs for one person to visit the ith place. Then N line follows, and each line contains M integers Vij (1<=i<=N, 1<=j<=M), 1<=Vij<=1000, representing how much the ith person is interested in the jth place. Then N line follows, and each line contains N integers Bij (1<=i<=N, 1<=j<=N), 0<=Bij<=1000, Bij=0 if i=j, Bij=Bji.
    A case starting with 0 0 indicates the end of input and you needn’t give an output.
     
    Output
    For each case, if you can arrange a plan lead to a positive result, output the result in one line, otherwise, output STAY HOME in one line.
     
    Sample Input
    2 1 10 15 5 0 5 5 0 3 2 30 50 24 48 40 70 35 20 0 4 1 4 0 5 1 5 0 2 2 100 100 50 50 50 50 0 20 20 0 0 0
     
    Sample Output
    5 41 STAY HOME
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  4041 4043 4050 4044 4045 
     
    13075053 2015-03-09 18:32:49 Accepted 4049 405MS 2120K 3076 B G++ czy
      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <string>
      7 #define N 15
      8 
      9 using namespace std;
     10 
     11 int n,m;
     12 int p[N];
     13 int v[N][N];
     14 int b[N][N];
     15 int dp[N][ (1<<10) ];
     16 int ans;
     17 int tot;
     18 int happy[N][ (1<<10) ];
     19 
     20 vector<int> can[ (1<<10) ];
     21 
     22 int cal(int i,int o);
     23 int ok(int k,int o);
     24 
     25 void ini()
     26 {
     27     int i,j;
     28     ans=0;
     29     memset(dp,0,sizeof(dp));
     30     for(i=1;i<=m;i++){
     31         scanf("%d",&p[i]);
     32     }
     33     for(i=0;i<n;i++){
     34         for(j=1;j<=m;j++){
     35             scanf("%d",&v[i][j]);
     36         }
     37     }
     38     for(i=0;i<n;i++){
     39         for(j=0;j<n;j++){
     40             scanf("%d",&b[i][j]);
     41         }
     42     }
     43     int o;
     44     tot = (1<<n);
     45     for(i=1;i<=m;i++){
     46         for(o=0;o<tot;o++){
     47             dp[i][o]=-1000000000;
     48         }
     49     }
     50     //printf("  n=%d m=%d tot=%d
    ",n,m,tot );
     51     for(i=1;i<=m;i++){
     52         for(o=0;o<tot;o++){
     53             happy[i][o]=cal(i,o);
     54         }
     55     }
     56 
     57     for(o=0;o<tot;o++){
     58         can[o].clear();
     59         for(int k=0;k<tot;k++){
     60             if(ok(k,o)==1){
     61                 can[o].push_back(k);
     62             }
     63         }
     64     }
     65 }
     66 
     67 int cal(int i,int o)
     68 {
     69     int re=0;
     70     int j,k;
     71     int cc=0;
     72     //printf("  i=%d o=%d
    ",i,o );
     73     for(j=0;j<n;j++){
     74         if( (1<<j) & o ){
     75             cc++;
     76             re+=v[j][i];
     77         }
     78     }
     79     //printf(" 1   re=%d
    ",re );
     80     for(j=0;j<n;j++){
     81         if( (1<<j) & o ){
     82             for(k=j+1;k<n;k++){
     83                 if( (1<<k) & o ){
     84                     re += b[j][k];
     85                 }
     86             }
     87         }
     88     }
     89     // printf("  2  re=%d
    ",re );
     90     re -= p[i]*cc;
     91      //printf("   3 re=%d
    ",re );
     92     //printf("  i=%d o=%d re=%d
    ",i,o,re );
     93     return re;
     94 }
     95 
     96 int ok(int k,int o){
     97     int j;
     98     for(j=0;j<n;j++){
     99        // printf("    j=%d
    ",j );
    100         if( (1<<j) & o ){
    101             if(  (  (1<<j) &k ) ==0 ){
    102                 return 0;
    103             }
    104         }
    105     }
    106     return 1;
    107 }
    108 
    109 void solve()
    110 {
    111     int o,j,i,k;
    112     int te;
    113     for(i=1;i<=m;i++){
    114         //printf("  i=%d
    ",i );
    115         for(o=0;o<tot;o++){
    116            // printf("   o=%d
    ", o);
    117             for(vector<int>::iterator it =can[o].begin();it != can[o].end();it++){
    118            // for(k=0;k<tot;k++){
    119                  //printf("   k=%d
    ", k);
    120                 k=*it;
    121                // if(ok(k,o)==0) continue;
    122                 
    123                 //te=cal(i,o);
    124                 te=happy[i][o];
    125                 dp[i][o]=max(dp[i][o],dp[i-1][k]+te);
    126                 //printf("    i=%d o=%d dp=%d
    ", i,o,dp[i][o]);
    127             }  
    128         }
    129     }
    130 
    131     i=m;
    132     for(o=0;o<tot;o++){
    133         //printf("  o=%d dp=%d
    ",o,dp[m][o] );
    134         ans=max(ans,dp[m][o]);
    135     }
    136 }
    137 
    138 void out()
    139 {
    140     if(ans<=0){
    141         printf("STAY HOME
    ");
    142     }
    143     else{
    144         printf("%d
    ", ans);
    145     }
    146 }
    147 
    148 int main()
    149 {
    150     while(scanf("%d%d",&n,&m)!=EOF){
    151         if(n==0 && m==0) break;
    152         ini();
    153         solve();
    154         out();
    155     }
    156 }
  • 相关阅读:
    如何测试一个网页登陆界面
    吞吐量(TPS)、QPS、并发数、响应时间(RT)概念
    postman接口案例
    接口定义
    socket网络编程
    分页读取文件内容
    hashlib,configparser,logging,模块
    python面向对象编程
    常用模块
    迭代器和生成器
  • 原文地址:https://www.cnblogs.com/njczy2010/p/4324225.html
Copyright © 2011-2022 走看看