zoukankan      html  css  js  c++  java
  • Codeforces Round #296 (Div. 2) D. Clique Problem [ 贪心 ]

    传送门

    D. Clique Problem
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

    Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

    Find the size of the maximum clique in such graph.

    Input

    The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

    Each of the next n lines contains two numbers xi, wi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

    Output

    Print a single number — the number of vertexes in the maximum clique of the given graph.

    Sample test(s)
    Input
    4
    2 3
    3 1
    6 1
    0 2
    Output
    3
    Note

    If you happen to know how to solve this problem without using the specific properties of the graph formulated in the problem statement, then you are able to get a prize of one million dollars!

    The picture for the sample test.

    题意:

    选出一个最大的集合,集合里面的点两两之间满足:|xi - xj| ≥ wi + wj.

    题解:

    贪心,先按x排序。设xj<xi<xk

    若xi-xj>=wi+wj;

    xk-xi>=wk+wi;

    则xk-xj>=wk+wj+2*wi>=wk+wj。

    故相邻的点之间满足条件,则所有点均满足条件。

    继续,xi-xj>=wi+wj; 等价于 xi-wi>=xj+wj;

    即前一个点的x+w的和要尽可能小。

    1.若当前点与前一个点满足条件,则ans++,xnow=x[i],wnow=w[i];

    2.若与前一个点不满足条件,则看 x+w的和的关系,若x+w<xnow+wnow,由于x是递增关系,x-w必然更大,则与前一个点满足条件的集合,肯定也与当前点满足。

    故舍弃前一个点,取当前点xnow=x[i],wnow=w[i];  反之,舍弃当前点。

    10349119 2015-03-19 16:14:45 njczy2010 D - Clique Problem GNU C++ Accepted 93 ms 1384 KB
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <stack>
     4 #include <vector>
     5 #include <algorithm>
     6 #include <queue>
     7 #include <map>
     8 #include <string>
     9 #include <set>
    10 
    11 #define ll long long
    12 int const N = 200005;
    13 int const M = 205;
    14 int const inf = 1000000000;
    15 ll const mod = 1000000007;
    16 
    17 using namespace std;
    18 
    19 int n;
    20 int xnow,wnow;
    21 int ans;
    22 
    23 typedef struct
    24 {
    25     int x;
    26     int w;
    27 }PP;
    28 
    29 PP p[N];
    30 
    31 bool cmp(PP a,PP b)
    32 {
    33     return a.x<b.x;
    34 }
    35 
    36 void ini()
    37 {
    38     ans=0;
    39     int i;
    40     for(i=1;i<=n;i++){
    41         scanf("%d%d",&p[i].x,&p[i].w);
    42     }
    43     sort(p+1,p+1+n,cmp);
    44 }
    45 
    46 void solve()
    47 {
    48     int i;
    49     ans=1;
    50     xnow=p[1].x;
    51     wnow=p[1].w;
    52     for(i=2;i<=n;i++){
    53         if(p[i].x-xnow>=p[i].w+wnow){
    54             xnow=p[i].x;
    55             wnow=p[i].w;
    56             ans++;
    57         }
    58         else{
    59             if(p[i].x+p[i].w<xnow+wnow){
    60                 xnow=p[i].x;
    61                 wnow=p[i].w;
    62             }
    63         }
    64     }
    65 }
    66 
    67 void out()
    68 {
    69     printf("%d
    ",ans);
    70 }
    71 
    72 int main()
    73 {
    74   //  freopen("data.in","r",stdin);
    75     //scanf("%d",&T);
    76     //for(cnt=1;cnt<=T;cnt++)
    77     while(scanf("%d",&n)!=EOF)
    78     {
    79         ini();
    80         solve();
    81         out();
    82     }
    83 }
  • 相关阅读:
    CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
    hdu 4607 树形dp 树的直径
    poj 2955 区间dp入门题
    poj 2139 flord水题
    poj 2377 最大生成树
    lightoj 1422 区间dp
    模拟类似括号匹配
    nyoj 33 蛇形填数
    nyoj 2 括号配对问题水
    Hackonacci Matrix Rotations 观察题 ,更新了我的模板
  • 原文地址:https://www.cnblogs.com/njczy2010/p/4351832.html
Copyright © 2011-2022 走看看