zoukankan      html  css  js  c++  java
  • 爬取诗词名句网数据并做简单数据分析

    爬取诗词总量为二十九万两千六百零二条数据

    一、爬虫编写

    目标网站:诗词名句网

    环境

    window10;

    python3.7;

    scrapy框架;

    mysql数据库;

    数据库设计

    根据要爬取的字段定义,爬取内容为诗词链接,简介,标题,作者,朝代,内容,注释,作者发表的文章数量,图片url

    如图

    1.创建项目和爬虫文件

    scrapy startproject scmjw
    
    cd scmjw
    
    scrapy genspider scmj www.xxx.com

    2.定义爬取字段

    items.py

    import scrapy
    
    
    class ScmjwItem(scrapy.Item):
        # define the fields for your item here like:
        # name = scrapy.Field()
        table = 'scmjw'
        url = scrapy.Field()
        category = scrapy.Field()
        title = scrapy.Field()
        auther = scrapy.Field()
        dynasty = scrapy.Field()
        content = scrapy.Field()
        contents = scrapy.Field()
        amount = scrapy.Field()
        beiyong1 = scrapy.Field()

    3.编写爬虫规则

    scmj.py

    # -*- coding: utf-8 -*-
    import scrapy
    from scmjw.items import ScmjwItem
    
    class ScmjSpider(scrapy.Spider):
        name = 'scmj'
        # allowed_domains = ['www.shicimingju.com']
        start_urls = ['http://www.shicimingju.com']
    
        def parse(self, response):
            list_urls = response.xpath('//div[@id="top_left_menu"]/ul/li')
            for list_url in list_urls:
                main_list = 'http://www.shicimingju.com' + list_url.xpath('./a/@href').extract_first()
                if 'shicimark' in main_list:
                    print(main_list)
                    yield scrapy.Request(url=main_list,callback=self.get_list)
                if 'category' in main_list:
                    print(main_list)
                    yield scrapy.Request(url=main_list,callback=self.get_list_cate)
    
        """爬取分类类别"""
        def get_list(self,response):
            div_lists = response.xpath('//div[@class="mark_card"]')
            for d in div_lists:
                item = ScmjwItem()
                next_url = 'http://www.shicimingju.com' + d.xpath('./a/@href').extract_first()
                images = d.xpath('./a/img/@src').extract_first()
                item['beiyong1'] = images
                yield scrapy.Request(url=next_url,callback=self.get_cate,meta={'item':item})
    
        def get_cate(self,response):
            item = response.meta['item']
            next_urls = response.xpath('//a[contains(text(), "《") and contains(text(), "》")]')
            item['amount'] = response.xpath('//div[@class="card"]/h1/text()').re_first('d+')
            for n in next_urls:
                next_url = 'http://www.shicimingju.com' + n.xpath('./@href').extract_first()
                yield scrapy.Request(url=next_url,callback=self.get_detail,meta={'item':item})
            self_urls = response.xpath('//a[contains(text(), "下一页")]/@href').extract_first()
            if self_urls:
                self_url = 'http://www.shicimingju.com' + self_urls
                yield scrapy.Request(url=self_url, callback=self.get_cate, meta={'item': item})
    
        def get_detail(self,response):
            item = response.meta['item']
            item['url'] = response.request.url
            item['category'] = response.xpath('//div[@class="shici-mark"]/a/text()').extract_first()
            item['title'] = response.xpath('//div[@id="item_div"]/h1/text()').extract_first()
            item['auther'] = response.xpath('//div[@class="niandai_zuozhe"]/a/text()').extract_first()
            item['dynasty'] = response.xpath('//div[@class="niandai_zuozhe"]/text()').extract_first()
            contents = response.xpath('//div[@class="item_content"]//text()').extract()
            content = ''
            for c in contents:
                content += c.strip() + '
    '
            item['content'] = content
            shangxi_contents = response.xpath('//div[@class="shangxi_content"]//text()').extract()
            contents = ''
            for s in shangxi_contents:
                contents += s.strip()
            item['contents'] = contents
            yield item
    
        """爬取作者类别"""
        def get_list_cate(self,response):
            div_lists = response.xpath('//div[@class="card zuozhe_card"]')
            for d in div_lists:
                next_url = 'http://www.shicimingju.com' + d.xpath('./div[@class="zuozhe_list_item"]/h3/a/@href').extract_first()
                yield scrapy.Request(url=next_url,callback=self.get_zuozhe)
            self_urls = response.xpath('//a[contains(text(), "下一页")]/@href').extract_first()
            if self_urls:
                self_url = 'http://www.shicimingju.com' + self_urls
                yield scrapy.Request(url=self_url, callback=self.get_list_cate)
    
        def get_zuozhe(self,response):
            item = ScmjwItem()
            item['amount'] = response.xpath('//div[@class="card shici_card"]/h1/text()').re_first('d+')
            next_urls = response.xpath('//div[@class="shici_list_main"]')
            for n in next_urls:
                next_url = 'http://www.shicimingju.com' + n.xpath('./h3/a/@href').extract_first()
                yield scrapy.Request(url=next_url,callback=self.get_z_detail,meta={'item':item})
            self_urls = response.xpath('//a[contains(text(), "下一页")]/@href').extract_first()
            if self_urls:
                self_url = 'http://www.shicimingju.com' + self_urls
                yield scrapy.Request(url=self_url, callback=self.get_zuozhe)
    
        def get_z_detail(self,response):
            item = response.meta['item']
            item['url'] = response.request.url
            item['category'] = response.xpath('//div[@class="shici-mark"]/a/text()').extract_first()
            item['title'] = response.xpath('//div[@id="item_div"]/h1/text()').extract_first()
            item['auther'] = response.xpath('//div[@class="niandai_zuozhe"]/a/text()').extract_first()
            item['dynasty'] = response.xpath('//div[@class="niandai_zuozhe"]/text()').extract_first()
            contents = response.xpath('//div[@class="item_content"]//text()').extract()
            content = ''
            for c in contents:
                content += c.strip() + '
    '
            item['content'] = content
            shangxi_contents = response.xpath('//div[@class="shangxi_content"]//text()').extract()
            contents = ''
            for s in shangxi_contents:
                contents += s.strip()
            item['contents'] = contents
            by1 = response.xpath('//div[@id="item_div"]/img/@src').extract_first()
            if by1:
                item['beiyong1'] = by1
            else:
                item['beiyong1'] = ''
            yield item

    4.pipline.py中编写写入数据库和下载图片到本地规则

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    import pymysql
    from scrapy import Request
    from scrapy.exceptions import DropItem
    from scrapy.pipelines.images import ImagesPipeline
    
    class ScmjwPipeline:
        def process_item(self, item, spider):
            return item
    
    class MysqlPipeline:
        def __init__(self,host,database,user,password):
            self.host = host
            self.database = database
            self.user = user
            self.password = password
    
        def open_spider(self,spider):
            self.conn = pymysql.connect(self.host,self.user,self.password,self.database,charset='utf8')
            self.cursor = self.conn.cursor()
            # self.old_url = set()
            # search_sql = "select url from scmjw"
            # self.cursor.execute(search_sql)
            # for i in self.cursor.fetchall():
            #     self.old_url.add(i[0])
    
        def process_item(self,item,spider):
            # if item['url'] in self.old_url:
            #     print('数据已入库',item['title'])
            #     raise DropItem
            print('数据下载中',item['title'])
            data = dict(item)
            keys = ', '.join(data.keys())
            values = ', '.join(['% s'] * len(data))
            sql = 'insert into % s (% s) values (% s)' % (item.table, keys, values)
            self.cursor.execute(sql, tuple(data.values()))
            self.conn.commit()
            return item
    
    
        def close_spider(self,spider):
            self.cursor.close()
            self.conn.close()
    
        @classmethod
        def from_crawler(cls,crawler):
            return cls(
                host=crawler.settings.get('MYSQL_HOST'),
                database=crawler.settings.get('MYSQL_DATABASE'),
                user=crawler.settings.get('MYSQL_USER'),
                password=crawler.settings.get('MYSQL_PASSWORD'),
            )
    
    
    class ImagePipeline(ImagesPipeline):
        def file_path(self, request, response=None, info=None):
            url = request.url
            file_name = url.split('?')[0].split('/')[-1]
            return file_name
    
        def item_completed(self, results, item, info):
            image_paths = [x['path'] for ok, x in results if ok]
            if not image_paths:
                raise DropItem('Image Downloaded Failed')
            return item
    
        def get_media_requests(self, item, info):
            if item['beiyong1']:
                yield Request(item['beiyong1'])

    5.settings.py中设置,空值日志输出,数据库信息,开启相应管道文件等

    # -*- coding: utf-8 -*-
    
    # Scrapy settings for scmjw project
    #
    # For simplicity, this file contains only settings considered important or
    # commonly used. You can find more settings consulting the documentation:
    #
    #     https://docs.scrapy.org/en/latest/topics/settings.html
    #     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
    #     https://docs.scrapy.org/en/latest/topics/spider-middleware.html
    
    BOT_NAME = 'scmjw'
    
    SPIDER_MODULES = ['scmjw.spiders']
    NEWSPIDER_MODULE = 'scmjw.spiders'
    
    
    # Crawl responsibly by identifying yourself (and your website) on the user-agent
    #USER_AGENT = 'scmjw (+http://www.yourdomain.com)'
    
    # Obey robots.txt rules
    ROBOTSTXT_OBEY = False
    LOG_LEVEL = 'ERROR'
    LOG_FILE = 'log.txt'
    IMAGES_STORE = './image'
    
    MYSQL_HOST = 'localhost'
    MYSQL_DATABASE = 'lf_01'
    MYSQL_USER = 'root'
    MYSQL_PASSWORD = 'root'
    
    
    
    # Configure maximum concurrent requests performed by Scrapy (default: 16)
    #CONCURRENT_REQUESTS = 32
    
    # Configure a delay for requests for the same website (default: 0)
    # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
    # See also autothrottle settings and docs
    #DOWNLOAD_DELAY = 3
    # The download delay setting will honor only one of:
    #CONCURRENT_REQUESTS_PER_DOMAIN = 16
    #CONCURRENT_REQUESTS_PER_IP = 16
    
    # Disable cookies (enabled by default)
    #COOKIES_ENABLED = False
    
    # Disable Telnet Console (enabled by default)
    #TELNETCONSOLE_ENABLED = False
    
    # Override the default request headers:
    #DEFAULT_REQUEST_HEADERS = {
    #   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    #   'Accept-Language': 'en',
    #}
    
    # Enable or disable spider middlewares
    # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
    #SPIDER_MIDDLEWARES = {
    #    'scmjw.middlewares.ScmjwSpiderMiddleware': 543,
    #}
    
    # Enable or disable downloader middlewares
    # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
    DOWNLOADER_MIDDLEWARES = {
       # 'scmjw.middlewares.ScmjwDownloaderMiddleware': 543,
       'scmjw.middlewares.QuChongMiddleware': 542,
    }
    
    # Enable or disable extensions
    # See https://docs.scrapy.org/en/latest/topics/extensions.html
    #EXTENSIONS = {
    #    'scrapy.extensions.telnet.TelnetConsole': None,
    #}
    
    # Configure item pipelines
    # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    ITEM_PIPELINES = {
       'scmjw.pipelines.ScmjwPipeline': 300,
       'scmjw.pipelines.MysqlPipeline': 301,
       'scmjw.pipelines.ImagePipeline': 302,
    }
    
    # Enable and configure the AutoThrottle extension (disabled by default)
    # See https://docs.scrapy.org/en/latest/topics/autothrottle.html
    #AUTOTHROTTLE_ENABLED = True
    # The initial download delay
    #AUTOTHROTTLE_START_DELAY = 5
    # The maximum download delay to be set in case of high latencies
    #AUTOTHROTTLE_MAX_DELAY = 60
    # The average number of requests Scrapy should be sending in parallel to
    # each remote server
    #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
    # Enable showing throttling stats for every response received:
    #AUTOTHROTTLE_DEBUG = False
    
    # Enable and configure HTTP caching (disabled by default)
    # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
    #HTTPCACHE_ENABLED = True
    #HTTPCACHE_EXPIRATION_SECS = 0
    #HTTPCACHE_DIR = 'httpcache'
    #HTTPCACHE_IGNORE_HTTP_CODES = []
    #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

    6.middleware.py文件中使用下载中间件去重,防止重复下载

    # -*- coding: utf-8 -*-
    
    # Define here the models for your spider middleware
    #
    # See documentation in:
    # https://docs.scrapy.org/en/latest/topics/spider-middleware.html
    
    from scrapy import signals
    import pymysql
    from scrapy.exceptions import IgnoreRequest
    
    class QuChongMiddleware:
        def __init__(self,host,database,user,password):
            self.conn = pymysql.connect(host, user, password, database, charset='utf8')
            self.cursor = self.conn.cursor()
            self.old_url = set()
            search_sql = "select url from scmjw"
            self.cursor.execute(search_sql)
            for i in self.cursor.fetchall():
                self.old_url.add(i[0])
    
        def process_request(self,request,spider):
            if request.url in self.old_url:
                print('中间件判断,数据库已存在')
                raise IgnoreRequest()
    
        @classmethod
        def from_crawler(cls,crawler):
            return cls(
                host=crawler.settings.get('MYSQL_HOST'),
                database=crawler.settings.get('MYSQL_DATABASE'),
                user=crawler.settings.get('MYSQL_USER'),
                password=crawler.settings.get('MYSQL_PASSWORD'),
            )
    
    
    class ScmjwSpiderMiddleware:
        # Not all methods need to be defined. If a method is not defined,
        # scrapy acts as if the spider middleware does not modify the
        # passed objects.
    
        @classmethod
        def from_crawler(cls, crawler):
            # This method is used by Scrapy to create your spiders.
            s = cls()
            crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
            return s
    
        def process_spider_input(self, response, spider):
            # Called for each response that goes through the spider
            # middleware and into the spider.
    
            # Should return None or raise an exception.
            return None
    
        def process_spider_output(self, response, result, spider):
            # Called with the results returned from the Spider, after
            # it has processed the response.
    
            # Must return an iterable of Request, dict or Item objects.
            for i in result:
                yield i
    
        def process_spider_exception(self, response, exception, spider):
            # Called when a spider or process_spider_input() method
            # (from other spider middleware) raises an exception.
    
            # Should return either None or an iterable of Request, dict
            # or Item objects.
            pass
    
        def process_start_requests(self, start_requests, spider):
            # Called with the start requests of the spider, and works
            # similarly to the process_spider_output() method, except
            # that it doesn’t have a response associated.
    
            # Must return only requests (not items).
            for r in start_requests:
                yield r
    
        def spider_opened(self, spider):
            spider.logger.info('Spider opened: %s' % spider.name)
    
    
    class ScmjwDownloaderMiddleware:
        # Not all methods need to be defined. If a method is not defined,
        # scrapy acts as if the downloader middleware does not modify the
        # passed objects.
    
        @classmethod
        def from_crawler(cls, crawler):
            # This method is used by Scrapy to create your spiders.
            s = cls()
            crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
            return s
    
        def process_request(self, request, spider):
            # Called for each request that goes through the downloader
            # middleware.
    
            # Must either:
            # - return None: continue processing this request
            # - or return a Response object
            # - or return a Request object
            # - or raise IgnoreRequest: process_exception() methods of
            #   installed downloader middleware will be called
            return None
    
        def process_response(self, request, response, spider):
            # Called with the response returned from the downloader.
    
            # Must either;
            # - return a Response object
            # - return a Request object
            # - or raise IgnoreRequest
            return response
    
        def process_exception(self, request, exception, spider):
            # Called when a download handler or a process_request()
            # (from other downloader middleware) raises an exception.
    
            # Must either:
            # - return None: continue processing this exception
            # - return a Response object: stops process_exception() chain
            # - return a Request object: stops process_exception() chain
            pass
    
        def spider_opened(self, spider):
            spider.logger.info('Spider opened: %s' % spider.name)

    7.在根目录下创建start.py文件用于启动爬虫

    from scrapy.crawler import CrawlerProcess
    from scrapy.utils.project import get_project_settings
    
    process = CrawlerProcess(get_project_settings())
    
    
    process.crawl('scmj')
    process.start()

    8.爬取结果概览

    二、简单对数据进行分析

    使用的第三方库为

    numpy,pandas,matplotlib

    1.代码如下

    import pandas as pd
    import numpy as np
    from sqlalchemy import create_engine
    from matplotlib import pyplot as plt
    import warnings
    
    
    '''
    明确分析目标
    1.诗词分类前十及占比
    2.写诗词数量最多的作者前十分类及占比
    3.诗词数量最多的朝代及占比
    4.有注释的诗词
    5.有图片的诗词
    '''
    
    '''设置正常显示中文和‘-’号'''
    # 设置正常显示中文
    plt.rcParams['font.sans-serif'] = 'SimHei'
    # 设置正常显示‘-’号
    plt.rcParams['axes.unicode_minus'] = False
    # 去除顶部轴
    plt.rcParams['axes.spines.top'] = False
    # 去除右部轴
    plt.rcParams['axes.spines.right'] = False
    # 屏蔽warning警告
    warnings.filterwarnings("ignore")
    
    
    class Scmj:
        def __init__(self):
            self.conn = create_engine("mysql+pymysql://root:root@127.0.0.1:3306/lf_01?charset=utf8mb4")
            self.df = pd.read_sql('select * from scmjw',self.conn)
            self.conn.dispose()
            # print(self.df.head())
            print(self.df.info())
            # print(self.df.describe())
    
        '''获取一些描述性信息'''
        def get_ty(self):
            # 数据总量
            self.scmj_all = self.df.shape[0]
            print('数据总量为:',self.scmj_all)
    
        '''诗词分类前十及占比'''
        def category_top10(self):
            category = self.df.groupby('category')
            category_top10 = category.count()['id'].sort_values(ascending=False)[:10]
            print('分类前十:
    ',category_top10)
            # 折线图
            pic = plt.figure(figsize=(12,12),dpi=100)
            pic.add_subplot(2,2,1)
            plt.title('诗词分类前十折线图')
            plt.xlabel('诗词分类')
            plt.ylabel('数量')
            plt.xticks(rotation=90)
            plt.yticks([i for i in range(0,200,10)])
            plt.plot(category_top10)
            # 条形图
            pic.add_subplot(2,2,2)
            plt.title('诗词分类前十条形图')
            plt.xlabel('诗词分类')
            plt.ylabel('数量')
            x = range(10)
            plt.bar(x,height=category_top10.values,width=0.7)
            for i in range(len(category_top10)):
                # print(category_top10.values[i])
                plt.text(i,category_top10.values[i],'{}首'.format(category_top10.values[i]),va='bottom',ha='center')
            plt.xticks(x,category_top10.index,rotation=90)
            # 饼图
            pic.add_subplot(2,2,3)
            plt.title('诗词分类前十饼图')
            plt.pie(category_top10,autopct='%1.1f%%',labels=category_top10.index,explode=[0.01 for i in range(10)])
            # 箱线图
            pic.add_subplot(2,2,4)
            plt.title('诗词分类前十箱线图')
            plt.boxplot(category_top10)
    
            plt.savefig('./诗词分类前十统计图.png')
            plt.show()
    
        '''写诗词数量最多的作者前十及占比'''
        def auther_top10(self):
            auther_top10 = self.df['auther'].value_counts().iloc[:10]
            print('写诗词数量前十作者',auther_top10)
            fig = plt.figure(figsize=(12,12),dpi=100)
            # 折线图
            fig.add_subplot(2,2,1)
            plt.title('折线图')
            plt.xlabel('作者')
            plt.ylabel('写作数量')
            for i,j in zip(auther_top10.index,auther_top10.values):
                plt.text(i,j,j,ha='center', va='bottom',)
            plt.plot(auther_top10)
            # 条形图
            fig.add_subplot(2,2,2)
            x = range(len(auther_top10))
            plt.title('条形图')
            plt.xlabel('作者')
            plt.ylabel('写作数量')
            plt.xticks(x,auther_top10.index)
            plt.bar(x=x,height=auther_top10.values,width=0.7)
            for i in range(len(auther_top10)):
                plt.text(i,auther_top10.values[i],auther_top10.values[i],va='bottom',ha='center')
            # 饼图
            fig.add_subplot(2,2,3)
            plt.title('饼图')
            plt.pie(auther_top10.values,autopct='%1.1f%%',labels=auther_top10.index,explode=[0.01 for i in range(len(auther_top10))])
            # 散点图
            fig.add_subplot(2,2,4)
            plt.title('散点图')
            plt.xlabel('作者')
            plt.ylabel('写作数量')
            plt.scatter(x=auther_top10.index,y=auther_top10.values)
            plt.savefig('写诗词数量前十作者统计图.png')
            plt.show()
    
        '''诗词数量最多的朝代及占比'''
        def dynasty_top10(self):
            df1 = self.df
            clean_d = df1['dynasty'].fillna(np.nan)
            clean_d[clean_d == ' [] '] = np.nan
            df1['dynasty'] = clean_d
            # df1[df1['dynasty'] == ' [] '] = None
            df1.dropna(subset=['dynasty'])
            dynasty = df1['dynasty'].value_counts()[:10]
            fig = plt.figure(dpi=100,figsize=(12,12))
            # 折线图
            fig.add_subplot(2, 2, 1)
            plt.title('折线图')
            plt.xlabel('朝代')
            plt.ylabel('写作数量')
            for i,j in zip(dynasty.index,dynasty.values):
                plt.text(i,j,j,ha='center',va='bottom')
            plt.plot(dynasty)
            # 条形图
            fig.add_subplot(2,2,2)
            plt.title('条形图')
            plt.xlabel('朝代')
            plt.ylabel('写作数量')
            plt.bar(x=dynasty.index,height=dynasty.values,width=0.8)
            for i,j in zip(dynasty.index,dynasty.values):
                plt.text(i,j,j,va='bottom',ha='center')
            # 饼图
            fig.add_subplot(2,2,3)
            plt.title('饼图')
            plt.pie(x=dynasty,autopct='%1.1f%%',labels=dynasty.index,explode=[0.01 for i in range(len(dynasty))])
            # 散点图
            fig.add_subplot(2,2,4)
            plt.title('散点图')
            plt.xlabel('朝代')
            plt.ylabel('写作数量')
            plt.scatter(x=dynasty.index,y=dynasty.values)
            for i,j in zip(dynasty.index,dynasty.values):
                plt.text(i,j,j,ha='center',va='center')
            plt.savefig('./诗词数量最多的朝代前十及占比.png')
            plt.show()
    
        '''有注释&图片的诗词'''
        def contents_images(self):
            df1 = self.df
            df1[df1['contents'] == ''] = None
            contents = df1.dropna(subset=['contents']).shape[0]
            print('有注释的诗词数量为:',contents)
            df2 = self.df
            df2[df2['beiyong1'] == ''] = None
            images = df2.dropna(subset=['beiyong1']).shape[0]
            print('有图片的诗词数量为:',images)
            '''饼图'''
            explode = [0.01,0.01]
            fig = plt.figure(figsize=(8,8),dpi=100)
            fig.add_subplot(1,2,1)
            plt.title('有注释的诗词占比')
            x = [self.scmj_all,contents]
            labels = ['无注释','有注释']
            plt.pie(x=x,autopct='%1.1f%%',labels=labels,explode=explode)
            fig.add_subplot(1,2,2)
            plt.title('有图片的诗词占比')
            x = [self.scmj_all,images]
            labels = ['无图片','有图片']
            plt.pie(x=x,autopct='%1.1f%%',labels=labels,explode=explode)
            plt.savefig('./图片&诗词占比.png')
            plt.show()
    
    
        def run(self):
            self.get_ty()
            self.category_top10()
            self.auther_top10()
            self.dynasty_top10()
            self.contents_images()
    
        def __del__(self):
            pass
    
    
    if __name__ == '__main__':
        S = Scmj()
        S.run()

    2.分析结果概览

    代码已托管github,地址为 https://github.com/terroristhouse/scmjw.git

  • 相关阅读:
    atom无法安装插件的解决方法之一
    css3伪类温故知新
    flex 布局笔记
    NPM 无法下载任何包的原因,解决方法
    flex align-content中的描述的“多根轴线的对齐方式”中的“多根轴线”到底是什么
    nodejs express 静态文件的路径
    当函数传入参数是引用类型的几种情况和现象。
    关于NODE NPM 输入命令后没反应的问题
    no input file specified
    获取form提交的返回值
  • 原文地址:https://www.cnblogs.com/nmsghgnv/p/13089671.html
Copyright © 2011-2022 走看看