题目
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
示例 1:
输入:[5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。
示例 2:
输入:[5,5,10]
输出:true
示例 3:
输入:[10,10]
输出:false
示例 4:
输入:[5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。
提示:
0 <= bills.length <= 10000
bills[i] 不是 5 就是 10 或是 20
思路
模拟 + 贪心
由于顾客只可能给你三个面值的钞票,而且我们一开始没有任何钞票,因此我们拥有的钞票面值只可能是 5 美元,10 美元和 20美元三种。基于此,我们可以进行如下的分类讨论。
5 美元,由于柠檬水的价格也为 5 美元,因此我们直接收下即可。
10 美元,我们需要找回 5 美元,如果没有 5 美元面值的钞票,则无法正确找零。
20 美元,我们需要找回 15 美元,此时有两种组合方式,一种是一张 10 美元和 5美元的钞票,一种是 3张 5 美元的钞票,如果两种组合方式都没有,则无法正确找零。当可以正确找零时,两种找零的方式中我们更倾向于第一种,即如果存在 5 美元和 10美元,我们就按第一种方式找零,否则按第二种方式找零,因为需要使用 5 美元的找零场景会比需要使用 10 美元的找零场景多,我们需要尽可能保留 5 美元的钞票。
基于此,我们维护两个变量 five 和ten 表示当前手中拥有的 5 美元和 10 美元钞票的张数,从前往后遍历数组分类讨论即可。
class Solution {
public boolean lemonadeChange(int[] bills) {
int five = 0, ten = 0;
for (int bill : bills) {
if (bill == 5) {
five++;
} else if (bill == 10) {
if (five == 0) {
return false;
}
five--;
ten++;
} else {
if (five > 0 && ten > 0) {
five--;
ten--;
} else if (five >= 3) {
five -= 3;
} else {
return false;
}
}
}
return true;
}
}