zoukankan      html  css  js  c++  java
  • luoguP1646 [国家集训队]happiness

    本篇篇幅过长,可能会出不少错,我已经查过一遍了,如果还有错恳请提出,我马上修改。


    题意

    这题有两种做法:

    根据套路,先将所有愉悦值加上,之后减去最小代价。

    1.

    首先套路地,从源点(s)向每个点连选文科的价值,从每个点向汇点(t)连选理科的价值,割那条表示不选哪科,这样可以保证每个人不选文就选理。

    接下来考虑如何处理这个限制:
    只要点对((i,j))中至少有一个不选文(理科同理),我们就要减去同选文的价值。

    我们可以新建一个节点(x),从(s)(x)连容量为(i,j)同选文的价值,之后从(x)(i,j)连容量为(inf)的边。

    我们发现这时如果(i,j)两点中有一个点理科边没有割(即不选文),那么此时就存在一条(s-x-i/j-t)这样一条路,我们只能割掉(s-x)这条边,因为如果割掉(i/j-t)这条边,那么我们可以不割(s-i/j)这条边,这与选文科不符,于是我们还是能保证每个人都选且只选了一科。

    建出的图如下:

    code:

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn=110;
    const ll inf=1e18;
    int n,m,cnt=1,tot=2,S,T;
    int head[maxn*maxn*20],cur[maxn*maxn*20],dep[maxn*maxn*20];
    ll ans;
    struct edge{int to,nxt;ll flow;}e[maxn*maxn*40];
    inline int id(int i,int j){return (i-1)*m+j;}
    inline void add(int u,int v,ll w)
    {
    	e[++cnt].nxt=head[u];
    	head[u]=cnt;
    	e[cnt].to=v;
    	e[cnt].flow=w;
    }
    inline void addflow(int u,int v,ll w){add(u,v,w);add(v,u,0);}
    inline bool bfs()
    {
        memset(dep,0,sizeof(dep));
        for(int i=0;i<=tot;i++)cur[i]=head[i];
        queue<int>q;
        q.push(S);dep[S]=1;
        while(!q.empty())
        {
            int x=q.front();q.pop();
            for(int i=head[x];i;i=e[i].nxt)
            {
                int y=e[i].to;
                if(dep[y]||e[i].flow<=0)continue;
                dep[y]=dep[x]+1;q.push(y);
            }
        }
        return dep[T]>0;
    }
    ll dfs(int x,int goal,ll lim)
    {
        if(x==goal||lim<=0)return lim;
        ll res=lim;
        for(int i=cur[x];i;i=e[i].nxt)
        {
            cur[x]=i;
            int y=e[i].to;
            if(e[i].flow<=0||dep[y]!=dep[x]+1)continue;
            ll tmp=dfs(y,goal,min(res,e[i].flow));
            if(tmp<=0)dep[y]=0;
            res-=tmp;
            e[i].flow-=tmp,e[i^1].flow+=tmp;
            if(res<=0)break;
        }
        return lim-res;
    }
    inline ll Dinic()
    {
        ll res=0;
        while(bfs())res+=dfs(S,T,inf);
        return res;
    }
    int main()
    {
    	scanf("%d%d",&n,&m);
    	S=0,T=n*m+1;
    	tot=n*m+1;
    	for(int i=1;i<=n;i++)
    		for(int j=1,x;j<=m;j++)
    		{
    			scanf("%d",&x);ans+=x;
    			addflow(S,id(i,j),x);
    		}
    	for(int i=1;i<=n;i++)
    		for(int j=1,x;j<=m;j++)
    		{	
    			scanf("%d",&x);ans+=x;
    			addflow(id(i,j),T,x);
    		}
    	for(int i=1;i<n;i++)
    		for(int j=1,x;j<=m;j++)
    		{	
    			scanf("%d",&x);ans+=x;
    			addflow(S,++tot,x);
    			addflow(tot,id(i+1,j),inf),addflow(tot,id(i,j),inf);
    		}
    	for(int i=1;i<n;i++)
    		for(int j=1,x;j<=m;j++)
    		{	
    			scanf("%d",&x);ans+=x;
    			addflow(++tot,T,x);
    			addflow(id(i+1,j),tot,inf),addflow(id(i,j),tot,inf);
    		}
    	for(int i=1;i<=n;i++)
    		for(int j=1,x;j<m;j++)
    		{
    			scanf("%d",&x);ans+=x;
    			addflow(S,++tot,x);
    			addflow(tot,id(i,j+1),inf),addflow(tot,id(i,j),inf);
    		}	
    	for(int i=1;i<=n;i++)
    		for(int j=1,x;j<m;j++)
    		{
    			scanf("%d",&x);ans+=x;
    			addflow(++tot,T,x);
    			addflow(id(i,j+1),tot,inf),addflow(id(i,j),tot,inf);
    		}		
    	printf("%lld",ans-Dinic());
    	return 0;
    }
    

    2.

    常规方法解方程。

    还是经典老图:

    这里割哪条边表示不选哪科。

    我们开始解方程:

    先设(a_i)表示(i)选文科的价值,(b_i)表示(i)选理科的价值,(c_{i,j})表示(i,j)同选文科的价值,(d_{i,j})表示(i,j)同选理科的价值。

    对于点对((i,j))可以列出方程(以下方程按照“同文”,“同理”,“(i)(j)理”,“(i)(j)文”排序):

    (egin{cases}c+d=b_i+b_j+d_{i,j}<1>\ a+b=a_i+a_j+c_{i,j}<2>\ a+d+f=b_i+a_j+c_{i,j}+d_{i,j}<3>\b+c+e=a_i+b_j+c_{i,j}+d_{i,j}<4>end{cases})

    我们通过(<3>+<4>-<1>-<2>)可以得到:(e+f=c_{i,j}+d_{i,j})
    (e=f),可得:(e=f=frac{c_{i,j}+d_{i,j}}{2})

    我们令(a=a_i+frac{c_{i,j}}{2}),即可解得其他变量的值:
    (b=a_j+frac{c_{i,j}}{2})
    (c=b_i+frac{d_{i,j}}{2})
    (d=b_j+frac{d_{i,j}}{2})

    于是我们就可以建图了,但是由于(a,b,c,d,e,f)不一定是整数,我们先整体乘2,最后除回去即可。

    code:

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=110;
    const int inf=1e9;
    int n,m,cnt=1,S,T,ans;
    int head[maxn*maxn*20],cur[maxn*maxn*20],dep[maxn*maxn*20];
    struct edge{int to,nxt,flow;}e[maxn*maxn*40];
    inline int read()
    {
    	char c=getchar();int res=0,f=1;
    	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    	while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
    	return res*f;
    }
    inline int id(int i,int j){return (i-1)*m+j;}
    inline void add(int u,int v,int w)
    {
    	e[++cnt].nxt=head[u];
    	head[u]=cnt;
    	e[cnt].to=v;
    	e[cnt].flow=w;
    }
    inline void addflow(int u,int v,int w){add(u,v,w),add(v,u,0);}
    inline bool bfs()
    {
        memset(dep,0,sizeof(dep));
        for(int i=S;i<=T;i++)cur[i]=head[i];
        queue<int>q;
        q.push(S);dep[S]=1;
        while(!q.empty())
        {
            int x=q.front();q.pop();
            for(int i=head[x];i;i=e[i].nxt)
            {
                int y=e[i].to;
                if(dep[y]||e[i].flow<=0)continue;
                dep[y]=dep[x]+1;q.push(y);
            }
        }
        return dep[T]>0;
    }
    int dfs(int x,int goal,int lim)
    {
        if(x==goal||lim<=0)return lim;
        int res=lim;
        for(int i=cur[x];i;i=e[i].nxt)
        {
            cur[x]=i;
            int y=e[i].to;
            if(e[i].flow<=0||dep[y]!=dep[x]+1)continue;
            int tmp=dfs(y,goal,min(res,e[i].flow));
            if(tmp<=0)dep[y]=0;
            res-=tmp;
            e[i].flow-=tmp,e[i^1].flow+=tmp;
            if(res<=0)break;
        }
        return lim-res;
    }
    inline int Dinic()
    {
        int res=0;
        while(bfs())res+=dfs(S,T,inf);
        return res;
    }
    int main()
    {
    	n=read(),m=read();
    	S=0,T=n*m+1;
    	for(int i=1;i<=n;i++)
    		for(int j=1;j<=m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(S,id(i,j),x<<1);
    		}
    	for(int i=1;i<=n;i++)
    		for(int j=1;j<=m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(id(i,j),T,x<<1);
    		}
    	for(int i=1;i<n;i++)
    		for(int j=1;j<=m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(id(i,j),id(i+1,j),x);addflow(id(i+1,j),id(i,j),x);
    			addflow(S,id(i,j),x),addflow(S,id(i+1,j),x);//之前少加。 
    		}
    	for(int i=1;i<n;i++)
    		for(int j=1;j<=m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(id(i,j),id(i+1,j),x);addflow(id(i+1,j),id(i,j),x);
    			addflow(id(i,j),T,x),addflow(id(i+1,j),T,x);
    		}
    	for(int i=1;i<=n;i++)
    		for(int j=1;j<m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(id(i,j),id(i,j+1),x);addflow(id(i,j+1),id(i,j),x);
    			addflow(S,id(i,j),x),addflow(S,id(i,j+1),x);
    		}
    	for(int i=1;i<=n;i++)
    		for(int j=1;j<m;j++)
    		{
    			int x=read();ans+=x;
    			addflow(id(i,j),id(i,j+1),x);addflow(id(i,j+1),id(i,j),x);
    			addflow(id(i,j),T,x),addflow(id(i,j+1),T,x);
    		}
    	printf("%d",ans-(Dinic()>>1));
    	return 0;
    }
    
  • 相关阅读:
    GPU 加速NLP任务(Theano+CUDA)
    SOJ 1717 Computer (单机任务调度)
    CNN for NLP (CS224D)
    数据分析:中国高校更名历史 Python
    TextRank 自动文摘
    深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv
    深度学习笔记(七)SSD 论文阅读笔记简化
    在Windows下编译扩展OpenCV 3.1.0 + opencv_contrib 及一些问题
    win10 + gtx1060 + cuda8.0 + caffe + vs2013 + Tensorflow + PyTorch
    深度学习笔记(二十五)DenseBox & FCOS & PolarMask
  • 原文地址:https://www.cnblogs.com/nofind/p/12094385.html
Copyright © 2011-2022 走看看