zoukankan      html  css  js  c++  java
  • P4250 [SCOI2015]小凸想跑步

    题意

    这题显然是暴推式子。

    考虑下图:

    (S_{ABP}<S_{CDP}iff vec{AB}*vec{AP}<vec{CD}*vec{CP})

    暴力展开可得:
    ((x_b-x_a,y_b-y_a) imes(x_p-x_a,y_p-y_a)<(x_d-x_c,y_d-y_c) imes(x_p-x_c,y_p-y_c))
    ((x_b-x_a)*(y_p-y_a)-(y_b-y_a)*(x_p-x_a)<(x_d-x_c)*(y_p-y_c)-(y_d-y_c)*(x_p-x_c))
    化简得:
    (x_p(y_a-y_b+y_d-y_c)+y_p(x_b-x_a+x_c-x_d)+((x_ay_b-x_by_a)-(x_cy_d-x_dy_c))<0)

    这是条直线,我们用半平面交即可概率就是合法面积/总面积。

    code:

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1e5+10;
    const double eps=1e-10;
    const double inf=1e12;
    int n,m;
    double sum,ans;
    struct Point
    {
        double x,y;
        inline double len(){return sqrt(x*x+y*y);}
        Point operator+(const Point a)const{return (Point){x+a.x,y+a.y};}
        Point operator-(const Point a)const{return (Point){x-a.x,y-a.y};}
        Point operator*(const double k){return (Point){x*k,y*k};}
        Point operator/(const double k){return (Point){x/k,y/k};}
        double operator*(const Point a)const{return x*a.y-y*a.x;}
        double operator&(const Point a)const{return x*a.x+y*a.y;}
    }p[maxn],a[maxn<<1];
    inline int dcmp(double x)
    {
        if(fabs(x)<=eps)return 0;
        return x<0?-1:1;
    } 
    inline Point get(Point a,Point b){return b-a;}
    struct Line
    {
        Point p,v;double theta;
        bool operator<(const Line& a)const
        {
            return !dcmp(theta-a.theta)?dcmp(get(p,v)*get(p,a.v))<0:dcmp(theta-a.theta)<0;
        }
    }line[maxn<<1],q[maxn<<1];
    inline Point getpoint(Line l1,Line l2)
    {
        Point p1=l1.p,v1=l1.v,p2=l2.p,v2=l2.v;
        v1=get(p1,v1),v2=get(p2,v2);
        Point u=get(p1,p2);
        return p2+v2*(u*v1)/(v1*v2);
    }
    inline bool check(Line a,Line b,Line c)
    {
        Point p=getpoint(a,b);
        return dcmp(get(c.p,c.v)*get(c.p,p))<=0;
    }
    inline void solve()
    {
        for(int i=1;i<=m;i++)line[i].theta=atan2(line[i].v.y-line[i].p.y,line[i].v.x-line[i].p.x);
        sort(line+1,line+m+1);
       	int cnt=0;line[0].theta=inf;
        for(int i=1;i<=m;i++)if(line[i].theta!=line[i-1].theta)line[++cnt]=line[i];
        m=cnt;
        int l,r;
        q[l=r=1]=line[1];q[++r]=line[2];
        for(int i=3;i<=m;i++)
        {
            while(l<r&&check(q[r-1],q[r],line[i]))r--;
            while(l<r&&check(q[l],q[l+1],line[i]))l++;
            q[++r]=line[i];
        }
        while(l<r&&check(q[r-1],q[r],q[l]))r--;
        while(l<r&&check(q[l],q[l+1],q[r]))l++;
    	cnt=0;
        q[r+1]=q[l];
        for(int i=l;i<=r;i++)a[++cnt]=getpoint(q[i],q[i+1]);
        a[cnt+1]=a[1];
        for(int i=1;i<=cnt;i++)ans+=a[i]*a[i+1];
    }
    int main()
    {
    	scanf("%d",&n);
    	for(int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
    	p[n+1]=p[1];
    	for(int i=1;i<=n;i++)
    	{
    		line[++m]=(Line){p[i],p[i+1],0};
    		sum+=p[i]*p[i+1];
    	}
    	for(int i=2;i<=n;i++)
    	{
    		double a,b,c;
    		a=p[1].y-p[2].y-p[i].y+p[i+1].y;
    		b=p[2].x-p[1].x+p[i].x-p[i+1].x;
    		c=p[1].x*p[2].y-p[2].x*p[1].y-p[i].x*p[i+1].y+p[i+1].x*p[i].y;
    		Point p;
    		if(!dcmp(b))p=(Point){-c/a,0};
    		else p=(Point){0,-c/b};
    		line[++m]=(Line){p,p+(Point){-b,a},0};
    	}
    	solve();
    	printf("%.4lf",ans/sum);
    	return 0;
    } 
    
  • 相关阅读:
    使用EF取数据库返回的数据
    关注博客分类
    Natas23 Writeup(php弱类型)
    Natas22 Writeup(header重定向、burp截取抓包)
    Natas21 Writeup(共用session、session注入)
    Natas20 Writeup(Session登录,注入参数)
    Natas19 Writeup(Session登录,常见编码,暴力破解)
    Natas18 Writeup(Session登录,暴力破解)
    Natas17 Writeup(sql盲注之时间盲注)
    Natas15 Writeup(sql盲注之布尔盲注)
  • 原文地址:https://www.cnblogs.com/nofind/p/12244699.html
Copyright © 2011-2022 走看看