https://www.51nod.com/Challenge/Problem.html#problemId=2489
题意:
小b有n个关闭的灯泡,编号为1...n。
小b会进行n轮操作,第i轮她会将编号为i的倍数的灯泡的开关状态取反,即开变成关,关变成开。
求n轮操作后,有多少灯泡是亮着的。
解法:线性筛出因子个数,判断因子个数奇偶性。
#include<bits/stdc++.h> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define cin(x) scanf("%lld" , &x); using namespace std; const int maxn = 1e6+9; const int N = 1e7+9; int fact[N]; void factorseive(){ for(int i = 1 ; i * i <= N ; i++){ for(int j = i ; i * j <= N ; j++){ fact[i*j] += 2 ; if(i == j) fact[i*j] -= 1 ; } } } void solve(){ factorseive(); int n ; scanf("%lld" , &n); int ans = 0 ; for(int i = 1 ; i <= n ; i++){ if(fact[i]%2 == 1){ ans++; } } cout << ans << endl; } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //int t ; //cin(t); //while(t--){ solve(); //} }