题目
平面上存在n(1e15)条直线。请问n条直线在平面上最多存在多少交点。
解法:分析可知数据范围会爆64位但又在128位以内,使用__int128。
__int128有定义但没有输入输出等操作,需要手写。
#include<bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
typedef long long ll ;
#define int ll
#define mod 1000000007
#define gcd __gcd
#define rep(i , j , n) for(int i = j ; i <= n ; i++)
#define red(i , n , j) for(int i = n ; i >= j ; i--)
#define ME(x , y) memset(x , y , sizeof(x))
//ll lcm(ll a , ll b){return a*b/gcd(a,b);}
ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;}
//int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;}
//const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len}
#define SC scanf
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(v) v.begin(),v.end()
#define size(v) (int)(v.size())
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
using namespace std;
const int maxn = 1e5+9;
const int N = 1e5+1;
inline __int128 read(){
__int128 x = 0 , f = 1 ;
char ch = getchar() ;
while(ch < '0' || ch > '9'){//使用while的原因是以防回车造成影响
if(ch == '-'){
f = -f ;
}
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
x = x * 10 + ch - '0';
ch = getchar();
}
return x*f;
}
inline void print(__int128 x){
if(x < 0){
x = -x ;
putchar('-');
}
if(x > 9){
print(x/10);
}
putchar(x%10+'0');
}
void solve(){
__int128 n = read();
print(n*(n-1)/2);
cout << endl;
}
signed main()
{
//ios::sync_with_stdio(false);
//cin.tie(0); cout.tie(0);
int _ ;cin>>_;while(_--)
solve();
}