zoukankan      html  css  js  c++  java
  • Hive 调优(v1.2.1)

    一、Fetch抓取

      Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录下的文件,然后输出查询结果到控制台。

      在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走mapreduce。
    <property>
        <name>hive.fetch.task.conversion</name>
        <value>more</value>
        <description>
          Expects one of [none, minimal, more].
          Some select queries can be converted to single FETCH task minimizing latency.
          Currently the query should be single sourced not having any subquery and should not have
          any aggregations or distincts (which incurs RS), lateral views and joins.
          0. none : disable hive.fetch.task.conversion
          1. minimal : SELECT STAR, FILTER on partition columns, LIMIT only
          2. more    : SELECT, FILTER, LIMIT only (support TABLESAMPLE and virtual columns)
        </description>
    </property>

    ①查询默认抓取模式

    hive (default)> set hive.fetch.task.conversion;
    hive.fetch.task.conversion=more

    ②select * 不走mr

    hive (default)> select * from score;
    OK
    score.name    score.subject    score.score
    孙悟空    语文    87
    孙悟空    数学    95
    ...省略...
    婷婷    数学    85
    婷婷    英语    78

    ③关闭抓取

    hive (default)> set hive.fetch.task.conversion=none;

    ④再次查询,需要走mr

    hive (default)> select * from score;
    Query ID = atguigu_20200425011511_d4d9f365-e96c-48b2-9bf6-7818f69e18da
    Total jobs = 1
    Launching Job 1 out of 1
    
    
    Status: Running (Executing on YARN cluster with App id application_1587748417298_0001)
    
    --------------------------------------------------------------------------------
            VERTICES      STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  KILLED
    --------------------------------------------------------------------------------
    Map 1 ..........   SUCCEEDED      1          1        0        0       0       0
    --------------------------------------------------------------------------------
    VERTICES: 01/01  [==========================>>] 100%  ELAPSED TIME: 4.48 s     
    --------------------------------------------------------------------------------
    OK
    score.name    score.subject    score.score
    孙悟空    语文    87
    孙悟空    数学    95
    ...省略...
    婷婷    数学    85
    婷婷    英语    78
    Time taken: 6.177 seconds, Fetched: 12 row(s)

    二、本地模式

      大多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的。不过,有时 Hive 的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际 job 的执行时间要多的多。对于大多数这种情况,Hive 可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。

      启用本地模式有两个前提条件,文件大小不能超过hive.exec.mode.local.auto.inputbytes.max,文件数量不能超过hive.exec.mode.local.auto.input.files.max

    ①用户可以通过设置 hive.exec.mode.local.auto 的值为 true,来让 Hive 在适当的时候自动启动这个优化。

    hive (default)> set hive.exec.mode.local.auto=true;

    ②测试

    hive (default)> select count(*) from score;
    Automatically selecting local only mode for query
    Query ID = atguigu_20200425012518_35634c83-8b18-4703-b36d-2dfdea881305
    Total jobs = 1
    Launching Job 1 out of 1
    Number of reduce tasks determined at compile time: 1
    In order to change the average load for a reducer (in bytes):
      set hive.exec.reducers.bytes.per.reducer=<number>
    In order to limit the maximum number of reducers:
      set hive.exec.reducers.max=<number>
    In order to set a constant number of reducers:
      set mapreduce.job.reduces=<number>
    Job running in-process (local Hadoop)
    2020-04-25 01:25:22,746 Stage-1 map = 100%,  reduce = 100%
    Ended Job = job_local2060501220_0001
    MapReduce Jobs Launched: 
    Stage-Stage-1:  HDFS Read: 426 HDFS Write: 3 SUCCESS
    Total MapReduce CPU Time Spent: 0 msec
    OK
    _c0
    12
    Time taken: 3.974 seconds, Fetched: 1 row(s)

    三、表的优化

    1.小表、大表join

      将 key 相对分散,并且数据量小的表放在 join 的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用 map join 让小的维度表(1000 条以下的记录条数)先进内存。在 map 端完成 reduce。
      实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表放在左边和右边已经没有明显区别。
     
    2.大表join大表
      有时 join 超时是因为某些 key 对应的数据太多,而相同 key 对应的数据都会发送到相同的 reducer 上,从而导致内存不够。此时我们应该仔细分析这些异常的 key,很多情况下,这些 key 对应的数据是异常数据,我们需要在 SQL 语句中进行过滤。举例:
    ①利用子查询过滤掉空key
     insert overwrite table jointable  select n.* from (select * from nullidtable where id is not null ) n left join ori o on n.id = o.id;

    ②有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的 reducer 上,防止数据倾斜,任务失败。

    insert overwrite table jointable select n.* from nullidtable n full join ori o on case when n.id is null then concat('hive', rand()) else n.id end = o.id;

    3.MapJoin

      如果不指定 MapJoin 或者不符合 MapJoin 的条件,那么 Hive 解析器会将 Join 操作转换成 Common Join,即:在 Reduce 阶段完成 join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在 map 端进行 join,避免 reducer 处理。
    ①设置自动选择 MapJoin,默认就是true
    set hive.auto.convert.join = true;

    ②大表小表的阈值设置(默认 25M 以下认为是小表)

    set hive.mapjoin.smalltable.filesize=25000000;

     4.group by

      默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾斜了。并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行部分聚合,最后在 Reduce 端得出最终结果。
      map端聚合参数设置如下:
    ①是否在 Map 端进行聚合,默认为 true
    set hive.map.aggr = true

    ②在 map 端进行聚合操作的条目数目,超过该值则进行分拆,默认是100000;

    set hive.groupby.mapaggr.checkinterval = 100000

    ③有数据倾斜的时候进行负载均衡,默认是 false

    set hive.groupby.skewindata = true
      当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
     
    5.Count(Distinct) 去重统计
      数据量小的时候无所谓,数据量大的情况下,由于 COUNT DISTINCT 操作需要用一个Reduce Task 来完成,这一个 Reduce 需要处理的数据量太大,就会导致整个 Job 很难完成,一般 COUNT DISTINCT 使用先 GROUP BY 再 COUNT 的方式替换,虽然会多用一个 Job 来完成,但在数据量大的情况下,这个绝对是值得的。
      使用count(distinct)的方式:
    select count(distinct id) from bigtable;

      先group by再count的方式

    select count(id) from (select id from bigtable group by id) a;

    6.笛卡尔积

    尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1个 reducer 来完成笛卡尔积。
     
    7.行列过滤
      列处理:在 SELECT 中,只拿需要的列,如果有,尽量使用分区过滤,少用 SELECT *。
      行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 where 后面,那么就会先全表关联,之后再过滤。
    select b.id from bigtable b join (select id from ori where id <= 10 ) o on b.id = o.id;

    8.动态分区调整

      关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不过,使用 Hive 的动态分区,需要进行相应的配置。
    ①开启动态分区功能(默认 true,开启)
    set hive.exec.dynamic.partition=true

    ②设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为静态分区,nonstrict 模式表示允许所有的分区字段都可以使用动态分区。)

    set hive.exec.dynamic.partition.mode=nonstrict

    ③在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。

    set hive.exec.max.dynamic.partitions=1000

    ④在每个执行 MR 的节点上,最大可以创建多少个动态分区。该参数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即 day 字段有 365 个值,那么该参数就需要设置成大于 365,如果使用默认值 100,则会报错。可以与总动态分区数一致。

    set hive.exec.max.dynamic.partitions.pernode=100

    ⑤整个 MR Job 中,最大可以创建多少个 HDFS 文件。

    set hive.exec.max.created.files=100000

    ⑥当有空分区生成时(分区字段为null),是否抛出异常。一般不需要设置。

    set hive.error.on.empty.partition=false

      动态分区插入数据时,只需要指明分区字段,不需要指明分区字段的值。

    insert overwrite table ori_partitioned_target partition (p_time) select id, time, uid, keyword, url_rank, click_num, click_url, p_time from ori_partitioned;

      静态分区插入数据时,需要指明具体分区的值。

    insert overwrite table student partition(month='201708') select id, name from student where month='201709';

    9.分桶

    10.分区

    四、MR优化

    1.合理设置map数

      通常情况下,作业会通过 input 的目录产生一个或者多个 map 任务。主要的决定因素有:input 的文件总个数,input 的文件大小,集群设置的文件块大小。 
      是不是 map 数越多越好?答案是否定的。如果一个任务有很多小文件(远远小于块大小 128m),则每个小文件也会被当做一个块,用一个 map 任务来完成,而一个 map 任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的 map 数是受限的。此时需要减少map数。
      是不是保证每个 map 处理接近 128m 的文件块,就高枕无忧了?答案也是不一定。比如有一个 127m 的文件,正常会用一个 map 去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果 map 处理的逻辑比较复杂,用一个 map任务去做,肯定也比较耗时。此时需要增加map数。
     
    2.小文件合并
      在 map 执行前合并小文件,减少 map 数:CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能。
    set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

    3.复杂文件增加 Map 数

      当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 map数,来使得每个 map 处理的数据量减少,从而提高任务的执行效率。增加 map 的方法为根据computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M 切片大小计算公式,调整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数。
      如:设置最大切片值为100个字节
    set mapreduce.input.fileinputformat.split.maxsize=100;

    4.合理设置reduce数

      方式一:

    ①设置每个 Reduce 处理的数据量默认是 256MB,参数1

    set hive.exec.reducers.bytes.per.reducer=256000000

    ②设置每个任务最大的 reduce 数,默认为 1009,参数2

    set hive.exec.reducers.max=1009
      开启的reduce数n=min(参数 2,总输入数据量/参数 1)
      方式二:
    set mapreduce.job.reduces = 15;
      reduce 个数并不是越多越好,过多的启动和初始化 reduce 也会消耗时间和资源;另外,有多少个 reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;在设置 reduce 个数的时候也需要考虑这两个原则:处理大数据量利用合适的 reduce 数;使单个 reduce 任务处理数据量大小要合适。
     
     五、并行执行
      Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。通过设置参数 hive.exec.parallel 值为true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。当然,得是在系统资源比较空闲的时候才有优势,否则,没资源,并行也起不来。
    set hive.exec.parallel=true; //打开任务并行执行
    set hive.exec.parallel.thread.number=16; //同一个 sql 允许最大并行度,默认为 8。

    六、严格模式

      Hive 提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。通过设置属性 hive.mapred.mode 值为默认是非严格模式 nonstrict 。开启严格模式需要修改 hive.mapred.mode 值为 strict,开启严格模式可以禁止以下几种类型的查询。
      ①限制笛卡尔积的查询。对关系型数据库非常了解的用户可能期望在执行 JOIN 查询的时候不使用 ON 语句而是使用 where 语句,这样关系数据库的执行优化器就可以高效地将WHERE 语句转化成那个 ON 语句。不幸的是,Hive 并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情况。
      ②对于分区表,除非 where 语句中含有分区字段过滤条件来限制范围,否则不允许执行。换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常大的数据集,而且数据增加迅速。没有进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。
      ③bigint和string、double之间的比较(可能进行错误的相等判断)
      ④对于使用了 order by 语句的查询,要求必须使用 limit 语句。因为 order by 为了执行排序过程会将所有的结果数据分发到同一个 Reducer 中进行处理,强制要求用户增加这个LIMIT 语句可以防止 Reducer 额外执行很长一段时间。
    <property>
        <name>hive.mapred.mode</name>
        <value>strict</value>
        <description>
            The mode in which the Hive operations are being performed. 
            In strict mode, some risky queries are not allowed to run. They 
            include:
            Cartesian Product.
            No partition being picked up for a query.
            Comparing bigints and strings.
            Comparing bigints and doubles.
            Orderby without limit.
        </description>
    </property>
    七、JVM重用
      JVM 重用是 Hadoop 调优参数的内容,其对 Hive 的性能具有非常大的影响,特别是对于很难避免小文件的场景或 task 特别多的场景,这类场景大多数执行时间都很短。Hadoop 的默认配置通常是使用派生 JVM 来执行 map 和 Reduce 任务的。这时 JVM 的启动过程可能会造成相当大的开销,尤其是执行的 job 包含有成百上千 task任务的情况。JVM重用可以使得 JVM 实例在同一个 job 中重新使用 N 次。N 的值可以在 Hadoop 的mapred-site.xml 文件中进行配置,默认为1。通常在 10-20 之间,具体多少需要根据具体业务场景测试得出。
    <property>
        <name>mapreduce.job.jvm.numtasks</name>
        <value>10</value>
        <description>
            How many tasks to run per jvm. If set to -1, there is no limit. 
        </description>
    </property>
      这个功能的缺点是,开启 JVM 重用将一直占用使用到的 task 插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job 中有某几个 reduce task 执行的时间要比其他 Reduce task 消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的 job使用,直到所有的 task 都结束了才会释放。
     
    八、推测执行
      在分布式集群环境下,因为程序 Bug(包括 Hadoop 本身的 bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有 50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop 采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。
      设置开启推测执行参数:Hadoop 的 mapred-site.xml 文件中进行配置。
    <property>
        <name>mapreduce.map.speculative</name>
        <value>true</value>
        <description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
    </property>
    
    <property>
        <name>mapreduce.reduce.speculative</name>
        <value>true</value>
        <description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
    </property>

      不过 hive 本身也提供了配置项来控制 reduce-side 的推测执行:

    <property>
        <name>hive.mapred.reduce.tasks.speculative.execution</name>
        <value>true</value>
        <description>Whether speculative execution for reducers should be turned on. </description>
    </property>
      关于调优这些推测执行变量,还很难给一个具体的建议。如果用户对于运行时的偏差非常敏感的话,那么可以将这些功能关闭掉。如果用户因为输入数据量很大而需要执行长时间的 map 或者 Reduce task 的话,那么启动推测执行造成的浪费是非常巨大大。
     
    九、压缩
     
    十、执行计划
      基本语法:EXPLAIN [EXTENDED | DEPENDENCY | AUTHORIZATION] query
      
    explain extended select deptno, avg(sal) avg_sal from emp group by deptno;
  • 相关阅读:
    Mysql 创建表
    oracle数据库 ORA-01017的解决办法
    用Html创建简历
    Mysql 基本的增删改查
    Linux 基本操作
    几乎百度
    测试第二天
    java map接口,可变参数,Collections集合工具类
    java set接口
    java List接口
  • 原文地址:https://www.cnblogs.com/noyouth/p/12770394.html
Copyright © 2011-2022 走看看