Problem UVA11059-Maximum Product
Accept:4769 Submit:38713
Time Limit: 3000 mSec
Problem Description
Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the maximum positive product involving consecutive terms of S. If you cannot find a positive sequence, you should consider 0 as the value of the maximum product.
Input
Each test case starts with 1 ≤ N ≤ 18, the number of elements in a sequence. Each element Si is an integer such that −10 ≤ Si ≤ 10. Next line will have N integers, representing the value of each element in the sequence. There is a blank line after each test case. The input is terminated by end of file (EOF).
Output
For each test case you must print the message: ‘Case #M: The maximum product is P.’, where M is the number of the test case, starting from 1, and P is the value of the maximum product. After each test case you must print a blank line.
Sample Input
Sample Ouput
Case #1: The maximum product is 8.
Case #2: The maximum product is 20.
题解:lrj给的是暴力的做法,不够这个题显然可以dp去做,维护两个dp数组,一个维护最大正值,一个维护最小负值,状态转移很简单,看代码就能明白。
P.S.原来之一用printf("%lld ",x)来输出long long,这一次用了I64d输出,WA到怀疑人生,不知道为啥。(写这一篇题解就是为了记录这个WA点)
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 using namespace std; 6 typedef long long LL; 7 8 const int maxn = 25; 9 LL dp_max[maxn],dp_min[maxn]; 10 int iCase = 1; 11 12 int main() 13 { 14 //freopen("input.txt","r",stdin); 15 //freopen("output.txt","w",stdout); 16 int n; 17 while(cin >> n){ 18 dp_max[0] = dp_min[0] = 0LL; 19 LL Max = 0; 20 int x; 21 for(int i = 1;i <= n;i++){ 22 cin >> x; 23 if(x > 0){ 24 dp_max[i] = dp_max[i-1]*x; 25 dp_min[i] = dp_min[i-1]*x; 26 if(!dp_max[i]) dp_max[i] = x; 27 } 28 else if(x < 0){ 29 dp_max[i] = dp_min[i-1]*x; 30 dp_min[i] = dp_max[i-1]*x; 31 if(!dp_min[i]) dp_min[i] = x; 32 } 33 else{ 34 dp_max[i] = dp_min[i] = 0LL; 35 } 36 if(Max < dp_max[i] && x) Max = dp_max[i]; 37 } 38 printf("Case #%d: The maximum product is %lld. ",iCase++,Max); 39 } 40 return 0; 41 }