zoukankan      html  css  js  c++  java
  • UVA116-Unidirectional TSP(动态规划基础)

    Problem UVA116-Unidirectional TSP

    Accept: 7167  Submit: 56893
    Time Limit: 3000 mSec

    Problem Description

    Input

    The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by m·n integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file. Foreachspecificationthenumberofrowswillbebetween1and10inclusive; thenumberofcolumns will be between 1 and 100 inclusive. No path’s weight will exceed integer values representable using 30 bits.

     Output

    Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weightpath, andthesecondlineisthecostofaminimalpath. Thepathconsistsofasequence of n integers(separatedbyoneormorespaces)representingtherowsthatconstitutetheminimalpath. If there is more than one path of minimal weight the path that is lexicographically smallest should be output. Note: Lexicographically means the natural order on sequences induced by the order on their elements.
     

     Sample Input

    5 6
    3 4 1 2 8 6
    6 1 8 2 7 4
    5 9 3 9 9 5
    8 4 1 3 2 6
    3 7 2 8 6 4
    5 6
    3 4 1 2 8 6
    6 1 8 2 7 4
    5 9 3 9 9 5
    8 4 1 3 2 6
    3 7 2 1 2 3
    2 2
    9 10
    9 10
     

    Sample Output

    1 2 3 4 4 5
    16
    1 2 1 5 4 5
    11
    1 1
    19

    题解:和数字三角形一样,水题。

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 const int maxn = 100 + 5, maxm = 10 + 5;
     6 const int INF = 0x3f3f3f3f;
     7 
     8 int n, m;
     9 int val[maxm][maxn], dp[maxm][maxn];
    10 int Next[maxm][maxn];
    11 
    12 int read() {
    13     int q = 0, f = 1; char ch = ' ';
    14     while (ch<'0' || ch>'9') {
    15         if (ch == '-') f = -1;
    16         ch = getchar();
    17     }
    18     while ('0' <= ch && ch <= '9') {
    19         q = q * 10 + ch - '0';
    20         ch = getchar();
    21     }
    22     return q * f;
    23 }
    24 
    25 int main()
    26 {
    27     //freopen("input.txt", "r", stdin);
    28     while (~scanf("%d%d", &m, &n)) {
    29         for (int i = 0; i < m; i++) {
    30             for (int j = 0; j < n; j++) {
    31                 val[i][j] = read();
    32             }
    33         }
    34         //memset(dp, INF, sizeof(dp));
    35         int ans = INF, first = -1;
    36 
    37         for (int j = n - 1; j >= 0; j--) {
    38             for (int i = 0; i < m; i++) {
    39                 if (j == n - 1) {
    40                     dp[i][j] = val[i][j];
    41                 }
    42                 else {
    43                     int row[3] = { (i - 1 + m) % m,i,(i + 1) % m };
    44                     sort(row, row + 3);
    45                     dp[i][j] = INF;
    46                     for (int k = 0; k < 3; k++) {
    47                         if (dp[i][j] > dp[row[k]][j + 1] + val[i][j]) {
    48                             dp[i][j] = dp[row[k]][j + 1] + val[i][j];
    49                             Next[i][j] = row[k];
    50                         }
    51                     }
    52                 }
    53                 if (j == 0 && dp[i][j] < ans) {
    54                     ans = dp[i][j];
    55                     first = i;
    56                 }
    57             }
    58         }
    59 
    60         printf("%d", first + 1);
    61         for (int i = Next[first][0], j = 1; j < n; i = Next[i][j], j++) {
    62             printf(" %d", i + 1);
    63         }
    64         printf("
    %d
    ", ans);
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    ES6新特性概览
    ECMAScript 位运算符
    jQuery源码分析系列(39) : 动画队列
    浏览器的工作原理:新式网络浏览器幕后揭秘
    jQuery源码分析系列(38) : 队列操作
    正则表达式30分钟入门教程
    jQuery源码分析系列(37) : Ajax 总结
    jQuery源码分析系列(36) : Ajax
    jQuery源码分析系列(35) : Ajax
    jQuery源码分析系列(34) : Ajax
  • 原文地址:https://www.cnblogs.com/npugen/p/9727322.html
Copyright © 2011-2022 走看看