zoukankan      html  css  js  c++  java
  • Triangle(求凸包最大内接三角形)

    题目描述

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    输入

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

    输出

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    样例输入 

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1
    

    样例输出 

    0.50
    27.00

    #include<bits/stdc++.h>//(求凸包最大内接三角形)O(n^2)
    
    #define ll long long
    #define N 50003
    using namespace std;
    const double pi = acos(-1.0);
    
    struct node {
        double x, y;
    
        node(double X = 0, double Y = 0) {
            x = X, y = Y;
        }
    } a[N], ch[N];
    
    node operator-(node a, node b) {
        return node(a.x - b.x, a.y - b.y);
    }
    
    node operator+(node a, node b) {
        return node(a.x + b.x, a.y + b.y);
    }
    
    node operator*(node a, double t) {
        return node(a.x * t, a.y * t);
    }
    
    bool operator<(node a, node b) {
        return a.x < b.x || a.x == b.x && a.y < b.y;
    }
    
    int n, m;
    
    double cross(node a, node b) {
        return a.x * b.y - a.y * b.x;
    }
    
    void convexhull() {
        sort(a + 1, a + n + 1);
        m = 0;
        if (n == 1) {
            ch[++m] = a[1];
            return;
        }
        for (int i = 1; i <= n; i++) {
            while (m > 1 && cross(ch[m - 1] - ch[m - 2], a[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = a[i];
        }
        int k = m;
        for (int i = n - 1; i >= 1; i--) {
            while (m > k && cross(ch[m - 1] - ch[m - 2], a[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = a[i];
        }
        m--;
    }
    
    double rotating() {
        if (m <= 2) return 0;
        if (m == 3) return fabs(cross(ch[1] - ch[0], ch[2] - ch[0])) / 2;
        double ans = 0;
        for (int i = 0; i < m; i++) {
            int j = (i + 1) % m;
            int k = (j + 1) % m;
            while (fabs(cross(ch[i] - ch[j], ch[i] - ch[k])) < fabs(cross(ch[i] - ch[j], ch[i] - ch[(k + 1) % m])))
                k = (k + 1) % m;
            while (i != j && k != i) {
                ans = max(ans, fabs(cross(ch[i] - ch[j], ch[i] - ch[k])));
                while (fabs(cross(ch[i] - ch[j], ch[i] - ch[k])) < fabs(cross(ch[i] - ch[j], ch[i] - ch[(k + 1) % m])))
                    k = (k + 1) % m;
                j = (j + 1) % m;
            }
        }
        return ans / 2.0;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n && n != -1) {
            for (int i = 1; i <= n; i++)cin >> a[i].x >> a[i].y;
            convexhull();
            double ans = rotating();
            cout << fixed << setprecision(2) << ans << endl;
        }
        return 0;
    }
    
    
    
     
     
  • 相关阅读:
    WP&Win10仿微信消息框代码分享
    Windows编程中回调函数的使用心得(MFC篇)
    进程间通信之WM_COPYDATA方式反思,回顾和总结
    华为的最新的两道算法设计题
    Python中3元运算符的实现
    Python Logging 模块研究
    LINUX下CPU Load Average的一点研究
    64位系统下,一个32位的程序究竟可以申请到多少内存,4GB还是更多?(一)
    Pyscripter 不能正确调用另一文件中模块的问题的解析(Internal Engine 和 Remote Engine)
    Django 最佳实践
  • 原文地址:https://www.cnblogs.com/nublity/p/11755395.html
Copyright © 2011-2022 走看看