zoukankan      html  css  js  c++  java
  • Triangle(求凸包最大内接三角形)

    题目描述

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    输入

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

    输出

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    样例输入 

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1
    

    样例输出 

    0.50
    27.00

    #include<bits/stdc++.h>//(求凸包最大内接三角形)O(n^2)
    
    #define ll long long
    #define N 50003
    using namespace std;
    const double pi = acos(-1.0);
    
    struct node {
        double x, y;
    
        node(double X = 0, double Y = 0) {
            x = X, y = Y;
        }
    } a[N], ch[N];
    
    node operator-(node a, node b) {
        return node(a.x - b.x, a.y - b.y);
    }
    
    node operator+(node a, node b) {
        return node(a.x + b.x, a.y + b.y);
    }
    
    node operator*(node a, double t) {
        return node(a.x * t, a.y * t);
    }
    
    bool operator<(node a, node b) {
        return a.x < b.x || a.x == b.x && a.y < b.y;
    }
    
    int n, m;
    
    double cross(node a, node b) {
        return a.x * b.y - a.y * b.x;
    }
    
    void convexhull() {
        sort(a + 1, a + n + 1);
        m = 0;
        if (n == 1) {
            ch[++m] = a[1];
            return;
        }
        for (int i = 1; i <= n; i++) {
            while (m > 1 && cross(ch[m - 1] - ch[m - 2], a[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = a[i];
        }
        int k = m;
        for (int i = n - 1; i >= 1; i--) {
            while (m > k && cross(ch[m - 1] - ch[m - 2], a[i] - ch[m - 2]) <= 0) m--;
            ch[m++] = a[i];
        }
        m--;
    }
    
    double rotating() {
        if (m <= 2) return 0;
        if (m == 3) return fabs(cross(ch[1] - ch[0], ch[2] - ch[0])) / 2;
        double ans = 0;
        for (int i = 0; i < m; i++) {
            int j = (i + 1) % m;
            int k = (j + 1) % m;
            while (fabs(cross(ch[i] - ch[j], ch[i] - ch[k])) < fabs(cross(ch[i] - ch[j], ch[i] - ch[(k + 1) % m])))
                k = (k + 1) % m;
            while (i != j && k != i) {
                ans = max(ans, fabs(cross(ch[i] - ch[j], ch[i] - ch[k])));
                while (fabs(cross(ch[i] - ch[j], ch[i] - ch[k])) < fabs(cross(ch[i] - ch[j], ch[i] - ch[(k + 1) % m])))
                    k = (k + 1) % m;
                j = (j + 1) % m;
            }
        }
        return ans / 2.0;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n && n != -1) {
            for (int i = 1; i <= n; i++)cin >> a[i].x >> a[i].y;
            convexhull();
            double ans = rotating();
            cout << fixed << setprecision(2) << ans << endl;
        }
        return 0;
    }
    
    
    
     
     
  • 相关阅读:
    随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比
    stringstream读入每行数据
    java Log4j封装,程序任何位置调用
    Oracle 归档模式和非归档模式
    为什么需要 RPC 服务?
    JFrame windowbuiler的使用基础
    Eclipse安装windowsbuilder
    字符串反转
    static{}静态代码块与{}普通代码块之间的区别
    jQuery EasyUI 数据网格
  • 原文地址:https://www.cnblogs.com/nublity/p/11755395.html
Copyright © 2011-2022 走看看