zoukankan      html  css  js  c++  java
  • 最长回文子串(马拉车)

    题目描述

    给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

    示例 1:

    输入: "babad"
    输出: "bab"
    

    注意: "aba" 也是一个有效答案。
    示例 2:

    输入: "cbbd"
    输出: "bb"
    

    DP

    直接枚举复杂度过高为O(n3),用DP可以将复杂度降到O(n2),枚举中心往两边找复杂度也是O(n^2)

    枚举:在求解过程中,基数的回文子串与偶数的回文子串是不一样的。比如最长回文子串为aba,对称中心就是b,如果最长回文子串为abba,则对称中心应该为两个b之间,为了解决这个问题,可以在每个字符两边加上一个符号,具体什么符号(是字符串里面的符号也行)对结果没有影响,比如加上“#”,则上述的两个序列变成了#a#b#a#和#a#b#b#a#,求出的长度分别为6和9,再除以2就可以得到最后的结果3和4。

    DP:对于字符串s,假设dp[i,j]=1表示s[i...j]是回文子串,那个必定存在dp[i+1,j-1]=1。这样最长回文子串就能分解成一系列子问题,可以利用动态规划求解了。

    • dp[i][j]=d[i+1][j-1],s[i]=s[j]
    • dp[i][j]=0,s[i]!=s[j]

    代码

    class Solution {
    private:
        int dp[1010][1010];
    public:
        string longestPalindrome(string s) {
            int len = s.size();
            if (len == 0)return "";
            if (len == 1)return s;
            int ans = 1, st = 0;
            dp[0][0] = 1;
            for (int i = 1; i < len; i++) {//初始化单个字符或者两个字符的情况
                dp[i][i] = 1;
                if (s[i] == s[i - 1]) {
                    dp[i - 1][i] = 1;
                    ans = 2;
                    st = i - 1;
                }
            }
            for (int l = 3; l <= len; l++) {//枚举子串的长度
                for (int i = 0; i + l - 1 < len; i++) {//枚举子串的起点
                    int j = i + l - 1;//终点
                    if (s[i] == s[j] && dp[i + 1][j - 1] == 1) {
                        dp[i][j] = 1;
                        st = i;
                        ans = l;
                    }
                }
            }
            return s.substr(st, ans);
        }
    };
    
    

    Manacher(马拉车)

    作者:windliang
    链接:https://www.zhihu.com/question/37289584/answer/465656849
    来源:知乎

    首先我们解决下奇数和偶数的问题,在每个字符间插入"#",并且为了使得扩展的过程中,到边界后自动结束,在两端分别插入 "^" 和 "$",两个不可能在字符串中出现的字符,这样中心扩展的时候,判断两端字符是否相等的时候,如果到了边界就一定会不相等,从而出了循环。经过处理,字符串的长度永远都是奇数了。

    imgimg

    首先我们用一个数组 P 保存从中心扩展的最大个数,而它刚好也是去掉 "#" 的原字符串的总长度。例如下图中下标是 6 的地方。可以看到 P[ 6 ] 等于 5,所以它是从左边扩展 5 个字符,相应的右边也是扩展 5 个字符,也就是 "#c#b#c#b#c#"。而去掉 # 恢复到原来的字符串,变成 "cbcbc",它的长度刚好也就是 5。

    imgimg

    求原字符串下标

    用 P 的下标 i 减去 P [ i ],再除以 2 ,就是原字符串的开头下标了。

    例如我们找到 P[ i ] 的最大值为 5 ,也就是回文串的最大长度是 5 ,对应的下标是 6 ,所以原字符串的开头下标是 (6 - 5 )/ 2 = 0 。所以我们只需要返回原字符串的第 0 到 第 (5 - 1)位就可以了。

    求每个 P [ i ]

    接下来是算法的关键了,它充分利用了回文串的对称性。

    我们用 C 表示回文串的中心,用 R 表示回文串的右边半径。所以 R = C + P[ i ] 。C 和 R 所对应的回文串是当前循环中 R 最靠右的回文串。

    让我们考虑求 P [ i ] 的时候,如下图。

    用 i_mirror 表示当前需要求的第 i 个字符关于 C 对应的下标。

    imgimg

    我们现在要求 P [ i ], 如果是用中心扩展法,那就向两边扩展比对就行了。但是我们其实可以利用回文串 C 的对称性。i 关于 C 的对称点是 i_mirror ,P [ i_mirror ] = 3,所以 P [ i ] 也等于 3 。

    但是有三种情况将会造成直接赋值为 P [ i_mirror ] 是不正确的,下边一一讨论。

    1. 超出了 R

    img

    img

    当我们要求 P [ i ] 的时候,P [ mirror ] = 7,而此时 P [ i ] 并不等于 7 ,为什么呢,因为我们从 i 开始往后数 7 个,等于 22 ,已经超过了最右的 R ,此时不能利用对称性了,但我们一定可以扩展到 R 的,所以 P [ i ] 至少等于 R - i = 20 - 15 = 5,会不会更大呢,我们只需要比较 T [ R+1 ] 和 T [ R+1 ]关于 i 的对称点就行了,就像中心扩展法一样一个个扩展。

    2. P [ i_mirror ] 遇到了原字符串的左边界

    imgimg

    此时P [ i_mirror ] = 1,但是 P [ i ] 赋值成 1 是不正确的,出现这种情况的原因是 P [ i_mirror ] 在扩展的时候首先是 "#" == "#" ,之后遇到了 "^"和另一个字符比较,也就是到了边界,才终止循环的。而 P [ i ] 并没有遇到边界,所以我们可以继续通过中心扩展法一步一步向两边扩展就行了。

    3. i 等于了 R

    此时我们先把 P [ i ] 赋值为 0 ,然后通过中心扩展法一步一步扩展就行了。

    考虑 C 和 R 的更新

    就这样一步一步的求出每个 P [ i ],当求出的 P [ i ] 的右边界大于当前的 R 时,我们就需要更新 C 和 R 为当前的回文串了。因为我们必须保证 i 在 R 里面,所以一旦有更右边的 R 就要更新 R。

    imgimg

    此时的 P [ i ] 求出来将会是 3 ,P [ i ] 对应的右边界将是 10 + 3 = 13,所以大于当前的 R ,我们需要把 C 更新成 i 的值,也就是 10 ,R 更新成 13。继续下边的循环。

    class Solution {
    public:
        string process(string s) {
            int len = s.size();
            if (len == 0)return "^$";
            string str = "^";
            for (int i = 0; i < len; i++)
                str = str + "#" + s[i];
            str += "#$";
            return str;
        }
    
    public:
        int P[2100];//两倍空间
    
    public:
        // 马拉车算法
        string longestPalindrome(string s) {
            string t = process(s);
            int len = t.size();
            int C = 0, R = 0;
            for (int i = 1; i < len - 1; i++) {
                int i_mirror = 2 * C - i;
                if (R > i)
                    P[i] = min(R - i, P[i_mirror]);// 防止超出 R
                else P[i] = 0;// 等于 R 的情况
                // 碰到之前讲的三种情况时候,需要利用中心扩展法
                while (t[i + P[i] + 1] == t[i - P[i] - 1])
                    P[i]++;
                // 判断是否需要更新 R和C
                if (i + P[i] > R) {
                    C = i;
                    R = i + P[i];
                }
            }
            // 找出 P 的最大值
            int ans = 0;
            int index = 0;
            for (int i = 1; i < len - 1; i++) {
                if (P[i] > ans) {
                    ans = P[i];
                    index = i;
                }
            }
            int st = (index - ans) / 2; //最开始讲的求原字符串下标
            return s.substr(st, ans);
        }
    };
    
    

    时间复杂度:for 循环里边套了一层 while 循环,难道不是 O ( n² ),不!其实是 O(n)。我们想象一下整个过程,首先外层有一个 for 循环,所以每个字符会遍历一次,而当我们扩展的时候,每次都是从 R + 1 开始扩展,之后又会更新 R 。所以一些字符会遍历两次,但此时这些字符变到 R 的左边,所以不会遍历第三次了,因为我们每次从 R 的右边开始扩展。综上,每个字符其实最多遍历 2 次,所以依旧是线性的。当然如果字符串长度是 len ,由于扩展了字符串,这里的 n 其实是 2 * len + 3 ,所以是O(2 * len + 3),就是 O(len)。

    空间复杂度:O(n)。

  • 相关阅读:
    为什么使用指针比使用对象本身更好?
    基于回调的事件处理——基于回调的事件传播
    基于回调的事件处理——回调机制与监听机制
    基于监听的事件处理——直接绑定到标签
    基于监听的事件处理——匿名内部类作为事件监听器类
    基于监听的事件处理——Activity本身作为事件监听器
    基于监听的事件处理——外部类作为事件监听器类
    基于监听的事件处理——内部类作为事件监听器类
    基于监听的事件处理——事件和事件监听器
    基于监听的事件处理——监听的处理模型
  • 原文地址:https://www.cnblogs.com/nublity/p/12527955.html
Copyright © 2011-2022 走看看