1. session对话控制
matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(matrix1,matrix2) #类似于numpy的np.dot(m1,m2)
方法1:
sess = tf.Session() result = sess.run(product) print(result) # [[12]] sess.close()
方法2:
with tf.Session() as sess:#不需要手动关闭sess result2 = sess.run(product) print(result2) # [[12]]
2. Variable变量
state = tf.Variable(0,name='counter') #定义常量 one one = tf.constant(1) #定义加法步骤(注:此步并没有直接计算) new_value = tf.add(state,one) #将 State 更新成 new_value update = tf.assign(state,new_value) # 如果定义 Variable, 就一定要 initialize # init = tf.initialize_all_variables() # tf 马上就要废弃这种写法 init = tf.global_variables_initializer() # 替换成这样就好 with tf.Session() as sess: sess.run(init) for _ in range(3): sess.run(update) print(sess.run(state)) >>>1 2 3
3. placeholder
Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).
接下来, 传值的工作交给了 sess.run() , 需要传入的值放在了feed_dict={} 并一一对应每一个 input. placeholder 与 feed_dict={} 是绑定在一起出现的。
input1 = tf.placeholder(tf.float32) #大部分只能处理float32 input2 = tf.placeholder(tf.float32) #两行两列[2,2] output = tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[2.],input2:[1.]})) >>>[2.]
4. 添加层def add_layer()
import tensorflow as tf def add_layer(inputs,in_size,out_size,activation_function=None): with tf.name_scope('layer'): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W') biases = tf.Variable(tf.zeros([1,out_size])+0.1) Wx_plus_biase = tf.add(tf.matmul(inputs,Weights),biases) if activation_function == None: outputs = Wx_plus_biase else: outputs = activation_function(Wx_plus_biase) return outputs
5. 搭建神经网络
import numpy as np x_data = np.linspace(-1,1,300)[:,np.newaxis] noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32) y_data = np.square(x_data) - 0.5 + noise # 利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。 with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32,[None,1],name='x_input') ys = tf.placeholder(tf.float32,[None,1],name='y_input') #层 l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) prediction = add_layer(l1,10,1,activation_function=None) #loss loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=1)) #优化器 train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss) # init = tf.initialize_all_variables() # tf 马上就要废弃这种写法 init = tf.global_variables_initializer() # 替换成这样就好 sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i % 50 == 0: # to see the step improvement print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
结果如下:
6. 结果可视化
import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data,y_data) # plt.ion() #plt.ion()用于连续显示 # plt.show() # 每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。 for i in range(1000): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i % 50 == 0: try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction,feed_dict={xs:x_data}) lines = ax.plot(x_data,prediction_value,'r-',lw=5)#线宽度=5 # ax.lines.remove(lines[0])#去除lines的第一个线段 plt.pause(0.1) #暂停0.1s # plt.show()
7. TensorFlow的优化器
tf.train.GradientDescentOptimizer tf.train.AdadeltaOptimizer tf.train.AdagradDAOptimizer tf.train.MomentumOptimizer tf.train.AdamOptimizer tf.train.FtrlOptimizer tf.train.RMSPropOptimizer
8. 可视化神经网络
# 图纸搭建 指定这里名称的会将来在可视化的图层inputs中显示出来 import tensorflow as tf with tf.name_scope('inputs'): # define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,1],name='x_in') ys = tf.placeholder(tf.float32,[None,1],name='y_in') def add_layer(inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer with tf.name_scope('layer'): with tf.name_scope('weights'): Weights = tf.Variable( tf.random_normal([in_size, out_size],name='W'), name='W') with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,name='b') with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add( tf.matmul(inputs, Weights), biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) return outputs #层 l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) prediction = add_layer(l1,10,1,activation_function=None) # the error between prediciton and real data with tf.name_scope('loss'): loss = tf.reduce_mean( tf.reduce_sum( tf.square(ys - prediction), # eduction_indices=[1] )) with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session() # get session # tf.train.SummaryWriter soon be deprecated, use following writer = tf.summary.FileWriter("E:/logs", sess.graph) sess.run(tf.global_variables_initializer())
inputs输入层
隐藏层layer
隐藏层layer1
损失函数
训练
9. 可视化训练过程
输入数据:
import tensorflow as tf import numpy as np # 图纸搭建 指定这里名称的会将来在可视化的图层inputs中显示出来 with tf.name_scope('inputs'): # define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,1],name='x_in') ys = tf.placeholder(tf.float32,[None,1],name='y_in') ## make up some data x_data= np.linspace(-1, 1, 300, dtype=np.float32)[:,np.newaxis] noise= np.random.normal(0, 0.05, x_data.shape).astype(np.float32) y_data= np.square(x_data) -0.5+ noise
添加层:
def add_layer(inputs , in_size, out_size,n_layer, activation_function=None): ## add one more layer and return the output of this layer layer_name='layer%s'%n_layer with tf.name_scope(layer_name): with tf.name_scope('weights'): Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W') # tf.histogram_summary(layer_name+'/weights',Weights) tf.summary.histogram(layer_name + '/weights', Weights) # tensorflow >= 0.12 with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b') # tf.histogram_summary(layer_name+'/biase',biases) tf.summary.histogram(layer_name + '/biases', biases) # Tensorflow >= 0.12 with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add(tf.matmul(inputs,Weights), biases) if activation_function is None: #最后一层不需要激活 outputs=Wx_plus_b else: outputs= activation_function(Wx_plus_b) # tf.histogram_summary(layer_name+'/outputs',outputs) tf.summary.histogram(layer_name + '/outputs', outputs) # Tensorflow >= 0.12 return outputs
损失函数:
with tf.name_scope('loss'):
loss= tf.reduce_mean(tf.reduce_sum(
tf.square(ys- prediction), reduction_indices=[1]))
# tf.scalar_summary('loss',loss) # tensorflow < 0.12
tf.summary.scalar('loss', loss) # tensorflow >= 0.12
接下来,开始合并打包。 tf.merge_all_summaries()
方法会对我们所有的summaries
合并到一起。因此在原有代码片段中添加:
sess= tf.Session() # merged= tf.merge_all_summaries() # tensorflow < 0.12 merged = tf.summary.merge_all() # tensorflow >= 0.12 # writer = tf.train.SummaryWriter('logs/', sess.graph) # tensorflow < 0.12 writer = tf.summary.FileWriter("logs/", sess.graph) # tensorflow >=0.12 # sess.run(tf.initialize_all_variables()) # tf.initialize_all_variables() # tf 马上就要废弃这种写法 sess.run(tf.global_variables_initializer()) # 替换成这样就好
训练
for i in range(1000): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i % 50 == 0: result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) writer.add_summary(result,i)
(1)DISTRIBUTIONS
(2)EVENTS
# tf.scalar_summary('loss',loss) # tensorflow < 0.12 tf.summary.scalar('loss', loss) # tensorflow >= 0.12
(3)HISTOGRAMS
# tf.histogram_summary(layer_name+'/biase',biases) # Tensorflow < 0.12 tf.summary.histogram(layer_name + '/biases', biases) # Tensorflow >= 0.12
参考文献:
【1】莫烦Python