zoukankan      html  css  js  c++  java
  • Tensorflow 搭建神经网络及tensorboard可视化

    1. session对话控制

    matrix1 = tf.constant([[3,3]])
    matrix2 = tf.constant([[2],[2]])
    product = tf.matmul(matrix1,matrix2) #类似于numpy的np.dot(m1,m2)

    方法1:

    sess = tf.Session()
    result = sess.run(product)
    print(result) # [[12]]
    sess.close()

    方法2:

    with tf.Session() as sess:#不需要手动关闭sess
        result2 = sess.run(product)
        print(result2) # [[12]]

    2. Variable变量

    state = tf.Variable(0,name='counter')
    
    #定义常量 one
    one = tf.constant(1)
    
    #定义加法步骤(注:此步并没有直接计算)
    new_value = tf.add(state,one)
    
    #将 State 更新成 new_value
    update = tf.assign(state,new_value)
    
    # 如果定义 Variable, 就一定要 initialize
    # init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
    init = tf.global_variables_initializer()  # 替换成这样就好
    
    with tf.Session() as sess:
        sess.run(init)
        for _ in range(3):
            sess.run(update)
            print(sess.run(state))
    
    >>>1
    2
    3
    

      

    3. placeholder

      Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **}).

    接下来, 传值的工作交给了 sess.run() , 需要传入的值放在了feed_dict={} 并一一对应每一个 input. placeholder 与 feed_dict={} 是绑定在一起出现的。

    input1 = tf.placeholder(tf.float32) #大部分只能处理float32
    input2 = tf.placeholder(tf.float32) #两行两列[2,2]
    
    output = tf.multiply(input1,input2)
    
    with tf.Session() as sess:
        print(sess.run(output,feed_dict={input1:[2.],input2:[1.]}))
    
    >>>[2.]
    

      

    4. 添加层def add_layer()

    import tensorflow as tf
    
    def add_layer(inputs,in_size,out_size,activation_function=None):
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
            biases = tf.Variable(tf.zeros([1,out_size])+0.1)
            Wx_plus_biase = tf.add(tf.matmul(inputs,Weights),biases)
        
            if activation_function == None:
                outputs = Wx_plus_biase
            else:
                outputs = activation_function(Wx_plus_biase)
    
            return outputs
    

      

    5. 搭建神经网络

    import numpy as np
    
    x_data = np.linspace(-1,1,300)[:,np.newaxis]
    noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)
    y_data = np.square(x_data) - 0.5 + noise
    
    # 利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32,[None,1],name='x_input')
        ys = tf.placeholder(tf.float32,[None,1],name='y_input')
    
    #层
    l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
    prediction = add_layer(l1,10,1,activation_function=None)
    
    #loss
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
                         reduction_indices=1))
    
    #优化器
    train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
    
    # init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
    init = tf.global_variables_initializer()  # 替换成这样就好
    sess = tf.Session()
    sess.run(init)
    
    for i in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i % 50 == 0:
        # to see the step improvement
            print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
    

    结果如下:

    6. 结果可视化

    import matplotlib.pyplot as plt
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.scatter(x_data,y_data)
    # plt.ion() #plt.ion()用于连续显示
    # plt.show()
    
    
    # 每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。
    
    for i in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i % 50 == 0:
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value = sess.run(prediction,feed_dict={xs:x_data})
            lines = ax.plot(x_data,prediction_value,'r-',lw=5)#线宽度=5
    #         ax.lines.remove(lines[0])#去除lines的第一个线段
            plt.pause(0.1) #暂停0.1s
    #         plt.show()
    

    7. TensorFlow的优化器

    tf.train.GradientDescentOptimizer
    tf.train.AdadeltaOptimizer
    tf.train.AdagradDAOptimizer
    tf.train.MomentumOptimizer
    tf.train.AdamOptimizer
    tf.train.FtrlOptimizer
    tf.train.RMSPropOptimizer
    

      

    8. 可视化神经网络

    # 图纸搭建   指定这里名称的会将来在可视化的图层inputs中显示出来
    import tensorflow as tf
    with tf.name_scope('inputs'):
        # define placeholder for inputs to network
        xs = tf.placeholder(tf.float32,[None,1],name='x_in')
        ys = tf.placeholder(tf.float32,[None,1],name='y_in')
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        # add one more layer and return the output of this layer
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                Weights = tf.Variable(
                tf.random_normal([in_size, out_size],name='W'), 
                name='W')
            with tf.name_scope('biases'):
                biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,name='b')
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.add(
                tf.matmul(inputs, Weights), 
                biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
            return outputs
    
    #层
    l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
    prediction = add_layer(l1,10,1,activation_function=None)
    
    # the error between prediciton and real data
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(
        tf.reduce_sum(
        tf.square(ys - prediction),
    #     eduction_indices=[1]
        ))
    
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    sess = tf.Session() # get session
    # tf.train.SummaryWriter soon be deprecated, use following
    writer = tf.summary.FileWriter("E:/logs", sess.graph)
    sess.run(tf.global_variables_initializer())

     

    inputs输入层

    隐藏层layer

    隐藏层layer1

    损失函数

     

    训练

     

     9. 可视化训练过程

    输入数据:

    import tensorflow as tf
    import numpy as np
    
    # 图纸搭建   指定这里名称的会将来在可视化的图层inputs中显示出来
    with tf.name_scope('inputs'):
        # define placeholder for inputs to network
        xs = tf.placeholder(tf.float32,[None,1],name='x_in')
        ys = tf.placeholder(tf.float32,[None,1],name='y_in')
    
     ## make up some data
     x_data= np.linspace(-1, 1, 300, dtype=np.float32)[:,np.newaxis]
     noise=  np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
     y_data= np.square(x_data) -0.5+ noise

    添加层:

    def add_layer(inputs , 
                  in_size, 
                  out_size,n_layer, 
                  activation_function=None):
        ## add one more layer and return the output of this layer
        layer_name='layer%s'%n_layer
        with tf.name_scope(layer_name):
             with tf.name_scope('weights'):
                  Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
                  # tf.histogram_summary(layer_name+'/weights',Weights)
                  tf.summary.histogram(layer_name + '/weights', Weights) # tensorflow >= 0.12
    
             with tf.name_scope('biases'):
                  biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b')
                  # tf.histogram_summary(layer_name+'/biase',biases)
                  tf.summary.histogram(layer_name + '/biases', biases)  # Tensorflow >= 0.12
    
             with tf.name_scope('Wx_plus_b'):
                  Wx_plus_b = tf.add(tf.matmul(inputs,Weights), biases)
    
             if activation_function is None: #最后一层不需要激活
                outputs=Wx_plus_b
             else:
                outputs= activation_function(Wx_plus_b)
    
             # tf.histogram_summary(layer_name+'/outputs',outputs)
             tf.summary.histogram(layer_name + '/outputs', outputs) # Tensorflow >= 0.12
    
        return outputs
    

    损失函数:

    with tf.name_scope('loss'):
         loss= tf.reduce_mean(tf.reduce_sum(
                  tf.square(ys- prediction), reduction_indices=[1]))
         # tf.scalar_summary('loss',loss) # tensorflow < 0.12
         tf.summary.scalar('loss', loss) # tensorflow >= 0.12
    

    接下来,开始合并打包。 tf.merge_all_summaries()方法会对我们所有的summaries合并到一起。因此在原有代码片段中添加:  

    sess= tf.Session()
    
    # merged= tf.merge_all_summaries()    # tensorflow < 0.12
    merged = tf.summary.merge_all() # tensorflow >= 0.12
    
    # writer = tf.train.SummaryWriter('logs/', sess.graph)    # tensorflow < 0.12
    writer = tf.summary.FileWriter("logs/", sess.graph) # tensorflow >=0.12
    
    # sess.run(tf.initialize_all_variables()) # tf.initialize_all_variables() # tf 马上就要废弃这种写法
    sess.run(tf.global_variables_initializer())  # 替换成这样就好

    训练

    for i in range(1000):
        sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
        if i % 50 == 0:
            result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
        writer.add_summary(result,i)
    

     

    (1)DISTRIBUTIONS

    (2)EVENTS

    # tf.scalar_summary('loss',loss) # tensorflow < 0.12
         tf.summary.scalar('loss', loss) # tensorflow >= 0.12

    (3)HISTOGRAMS

    # tf.histogram_summary(layer_name+'/biase',biases)  # Tensorflow < 0.12
    tf.summary.histogram(layer_name + '/biases', biases)  # Tensorflow >= 0.12

     

     

    参考文献:

    【1】莫烦Python

      

  • 相关阅读:
    SpringMvc最全的约束——你的感冒清个人总结
    spring配置文件比较全的约束
    android 发送邮件--实现 send email for android
    android异常 More than one file was found with OS independent path 'META-INF/XXX'
    android异常 More than one file was found with OS independent path 'META-INF/XXX'
    Error:(949) Multiple substitutions specified in non-positional format; Android格式化string.xml
    Android 设置ImageView全屏
    Android 设置ImageView全屏
    git的使用之eclipse Hbuilder
    git的使用之eclipse Hbuilder
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10626378.html
Copyright © 2011-2022 走看看