There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● a i ∈ 0,n0,n
● a i ≠ a j( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“�” denotes exclusive or):
t = (a 0 � b 0) + (a 1 � b 1) +・・・+ (a n � b n)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 10 5), The second line contains a 0,a 1,a 2,…,a n.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b 0,b 1,b 2,…,b n. There is exactly one space between b i and b i+1 (0 ≤ i ≤ n - 1). Don’t ouput any spaces after b n.
Sample Input
4
2 0 1 4 3
Sample Output
20
1 0 2 3 4
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
typedef long long ll;
const int maxn=110000;
const int INF=0x3f3f3f3f;
ll a[maxn];
ll d[maxn];
int main()
{
ll n;
while(~scanf("%I64d",&n))
{
for(ll i=0; i<=n; i++)
scanf("%I64d",&a[i]);
memset(d,-1,sizeof(d));
ll ans=0;
for(ll i=n; i>=0; i--)
{
ll t=0;
if(d[i]==-1)
{
for(ll j=0;; j++)
{
if(!(i&(1<<j))) t+=(1<<j);
if(t>=i)
{
t-=(1<<j);
break;
}
}
ans+=(i^t)*2;
d[i]=t;
d[t]=i;
}
}
printf("%I64d
",ans);
for(ll i=0; i<=n; i++)
printf(i==n?"%I64d
":"%I64d ",d[a[i]]);
}
return 0;
}