zoukankan      html  css  js  c++  java
  • 稀疏2d卷积模型搭建

    稀疏2d卷积

    输入

    • 1.sparse_shape = torch.LongTensor([87, 87])

    • 2.input = scn.InputBatch(2, spase_shape) # dimension sparse shape

    • 3.输入稀疏张量

      # add_sample的一种方式
      input.add_sample()
      location = torch.LongTensor([y, x])  
      featureVector = torch.FloatTensor([2])
      input.set_location(location, featureVector, 0)
      
      # 另一种方式
      input.add_sample()
      locations.append([y, x])
      features.append([1])
      locations = torch.LongTensor(locations)
      features = torch.FloatTensor(features)
      input.set_locations(locations, features, 0)
      
      
    • 另外一种方法:

      self.inputLayer = scn.InputLayer(2, self.spatial_size, 2) # dimension, spatial_size, mode
      input = self.inputLayer(x)   # 这里有一个问题,这个x是什么样的呢?也有坐标和features
      # 其中变量x是一个(coors, features, batch_size)的一个元组。
      
      

    model搭建

    model1 = scn.Sequential().add(
        scn.SubmanifoldConvolution(2, 1, 8, 3, False)
    ).add(
        scn.SubmanifoldConvolution(2, 8, 16, 3, False)
    ).add(
        scn.SubmanifoldConvolution(2, 16, 32, 3, False)
    ).add(
        scn.BatchNormalization(32)
    ).add(
        scn.Convolution(2, 32, 32, 3, 2, False),
    ).add(
        scn.SparseToDense(2, 32)
    )
    
    
    # 稀疏2d卷积模型
    
    import torch
    import torch.nn as nn
    import sparseconvnet as scn
    from data import get_iterators
    
    # two-dimensional SparseConvNet
    class Model(nn.Module):
        def __init__(self):
            nn.Module.__init__(self)
            self.sparseModel = scn.Sequential(
                scn.SubmanifoldConvolution(2, 3, 8, 3, False),
                scn.MaxPooling(2, 3, 2),
                scn.SparseResNet(2, 8, [           # dimension,输入通道数,['basic block',输出通道数,]
                            ['b', 8, 2, 1],
                            ['b', 16, 2, 2],
                            ['b', 24, 2, 2],
                            ['b', 32, 2, 2]]),
                scn.Convolution(2, 32, 64, 5, 1, False),
                scn.BatchNormReLU(64),
                scn.SparseToDense(2, 64))
            self.spatial_size= self.sparseModel.input_spatial_size(torch.LongTensor([1, 1]))
            self.inputLayer = scn.InputLayer(2,self.spatial_size,2)
            self.linear = nn.Linear(64, 183)
    
        def forward(self, x):
            x = self.inputLayer(x)
            x = self.sparseModel(x)
            x = x.view(-1, 64)
            x = self.linear(x)
            return x
    
    model = Model()
    print('model: ', model)
    
    
    ## 稀疏卷积 ResNet结构实现
    def SparseResNet(dimension, nInputPlanes, layers):
        """
        pre-activated ResNet
        e.g. layers = {{'basic',16,2,1}, {'basic',32,2}}
        """
        nPlanes = nInputPlanes
        m = scn.Sequential()
    
        def residual(nIn, nOut, stride):
            if stride > 1:
                return scn.Convolution(dimension, nIn, nOut, 3, stride, False)
            elif nIn != nOut:
                return scn.NetworkInNetwork(nIn, nOut, False)
            else:
                return scn.Identity()
        for blockType, n, reps, stride in layers:
            for rep in range(reps):
                if blockType[0] == 'b':  # basic block
                    if rep == 0:
                        m.add(scn.BatchNormReLU(nPlanes))
                        m.add(
                            scn.ConcatTable().add(
                                scn.Sequential().add(
                                    scn.SubmanifoldConvolution(
                                        dimension,
                                        nPlanes,
                                        n,
                                        3,
                                        False) if stride == 1 else scn.Convolution(
                                        dimension,
                                        nPlanes,
                                        n,
                                        3,
                                        stride,
                                        False)) .add(
                                    scn.BatchNormReLU(n)) .add(
                                    scn.SubmanifoldConvolution(
                                        dimension,
                                        n,
                                        n,
                                        3,
                                        False))) .add(
                                residual(
                                    nPlanes,
                                    n,
                                    stride)))
                    else:
                        m.add(
                            scn.ConcatTable().add(
                                scn.Sequential().add(
                                    scn.BatchNormReLU(nPlanes)) .add(
                                    scn.SubmanifoldConvolution(
                                        dimension,
                                        nPlanes,
                                        n,
                                        3,
                                        False)) .add(
                                    scn.BatchNormReLU(n)) .add(
                                    scn.SubmanifoldConvolution(
                                        dimension,
                                        n,
                                        n,
                                        3,
                                        False))) .add(
                                scn.Identity()))
                nPlanes = n
                m.add(scn.AddTable())
        m.add(scn.BatchNormReLU(nPlanes))
        return m
    

    将稀疏转成稠密张量

    • scn.SparseToDense(2, 32)

    总结

    稀疏卷积网络的搭建基本就是这个样子。我觉得难点还是具体的实现。

  • 相关阅读:
    获取系统DPI、系统显示比例等
    [LeetCode] 698. Partition to K Equal Sum Subsets
    .NET Framework基础知识(二)(转载)
    linux week3
    多进程
    Python 析构方法__del__
    面向对象作业
    网页视频加速播放
    javaScript(5)---运算符
    javaScript(5)---运算符
  • 原文地址:https://www.cnblogs.com/o-v-o/p/10948604.html
Copyright © 2011-2022 走看看