给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
图中的每个节点都包含它的值 val(int) 和其邻居的列表(list[Node])。
class Node {
public int val;
public List<Node> neighbors;
}
测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1),第二个节点值为 2(val = 2),以此类推。该图在测试用例中使用邻接列表表示。
邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。
给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。
示例 1:
输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
示例 2:
输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。
示例 3:
输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。
示例 4:
输入:adjList = [[2],[1]]
输出:[[2],[1]]
提示:
- 节点数不超过 100 。
- 每个节点值 Node.val 都是唯一的,1 <= Node.val <= 100。
- 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
- 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
- 图是连通图,你可以从给定节点访问到所有节点。
1 /** 2 * // Definition for a Node. 3 * function Node(val, neighbors) { 4 * this.val = val === undefined ? 0 : val; 5 * this.neighbors = neighbors === undefined ? [] : neighbors; 6 * }; 7 */ 8 9 /** 10 * @param {Node} node 11 * @return {Node} 12 */ 13 14 //深度优先遍历 15 var cloneGraph = function(node) { 16 //如果是空结点,直接返回 17 if(!node) return; 18 const visited = new Map(); //用记录访问过的结点 19 const dfs = (n) => { 20 const nCopy = new Node(n.val); //拷贝 21 visited.set(n, nCopy); 22 (n.neighbors || []).forEach( ne => { 23 if(!visited.has(ne)){ 24 dfs(ne) 25 } 26 nCopy.neighbors.push(visited.get(ne)); 27 }) 28 } 29 dfs(node) 30 return visited.get(node) 31 }; 32 33 //广度优先遍历 34 var cloneGraph = function(node) { 35 //如果是空结点,直接返回 36 if(!node) return; 37 const visited = new Map(); 38 visited.set(node, new Node(node.val)); 39 const q = [node]; 40 while(q.length){ 41 const n = q.shift(); 42 (n.neighbors || []).forEach(ne => { 43 if(!visited.has(ne)){ 44 q.push(ne); 45 visited.set(ne, new Node(ne.val)); 46 } 47 visited.get(n).neighbors.push(visited.get(ne)) //添加边 48 }) 49 50 } 51 return visited.get(node) 52 };