zoukankan      html  css  js  c++  java
  • bzoj4540: [Hnoi2016]序列

    4540: [Hnoi2016]序列

    Time Limit: 20 Sec  Memory Limit: 512 MB
    Submit: 1266  Solved: 594
    [Submit][Status][Discuss]

    Description

      给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-
    1
    ,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r
    ≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有
    6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。

    Input

      输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开
    ,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。

    Output

      对于每次询问,输出一行,代表询问的答案。

    Sample Input

    5 5
    5 2 4 1 3
    1 5
    1 3
    2 4
    3 5
    2 5

    Sample Output

    28
    17
    11
    11
    17

    HINT

    1 ≤N,Q ≤ 100000,|Ai| ≤ 10^9

     
    题解
      这题一直没过今天发现单调栈写错了……
      首先我们找出L[i],R[i]表示[L[i],i]和[i,R[i]都是比a[i]大的数,且a[L[i]-1]和a[R[i]+1]都要比a[i]大,这样左端点在[L[i],i],右端点在[i,R[i]]的区间都是以a[i]为最小值。也就是可以认为在二维平面上x坐标是[L[i],i]y坐标是[i,R[i]]的点权值都是a[i],而我们查询的实际上就是二维平面上[l,r][l,r]的矩形权值和。
      L[i]和R[i]可以一遍单调栈轻松求出来。这样剩下的就是一个矩形加矩形求和的问题了,当然可以主席树来搞,但是觉得写的麻烦的我用了奇怪的办法……
      首先把询问拆成在(r处询问(l,r))-(l-1处询问(l,r)),这样询问就是两个求前缀和的操作。用一条扫描线扫过去,矩形拆成加入和删除的删除(l1,l2,r2,+w),(r1+1,l2,r2,-w)。用一颗线段树(sum1)维护当前扫描线上的权值,假如当前扫描线在i的位置,有询问(l,r),那么首先计算x=sum1(L,R)*(i+1)的值,但是我们发现这样的话,假如矩形加事件发生在l1那么就会多算(1,l1)的部分。同时,如果一个矩形已经结束,我们会少算(l1,r1)的部分。这样我们可以再维护一颗线段树,事件(pos,l,r,w),每次加的权值是pos*w,最后把x-sum2(L,R)就行了。
      代码比较丑……主要是这个思想对吧……
      
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<cmath>
      5 #include<algorithm>
      6 #define inf 1000000001
      7 using namespace std;
      8 const int N=200085;
      9 long long F[4*N],Tag[4*N],f[4*N],tag[4*N];
     10 long long  ans[N];
     11 long long  a[N],st[N],L[N],R[N];
     12 struct opr{int id,l,r,ps,dd;}op[2*N];
     13 struct mar{int l,r,dd,ps;long long w;}data[2*N];
     14 int n,m,l,r,tt,tot;
     15 inline long long  read()
     16 {
     17     int x=0,f=1;char ch=getchar();
     18     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
     19     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
     20     return x*f;
     21 }
     22 bool cmp1(mar a,mar b)
     23 {
     24     return a.ps<b.ps;
     25 }
     26 bool cmp2(opr a,opr b)
     27 {
     28     return a.ps<b.ps;
     29 }
     30 void INS(int i,int l,int r,int ll,int rr,long long w)
     31 {
     32     if((ll<=l)&&(r<=rr))
     33     {
     34         Tag[i]+=w;F[i]+=w*(long long)(r-l+1);return;
     35     }
     36     int mid=(l+r)/2;
     37     if(ll<=mid)INS(i*2,l,mid,ll,rr,w);if(mid+1<=rr)INS(i*2+1,mid+1,r,ll,rr,w);
     38     F[i]=Tag[i]*(long long)(r-l+1)+F[i*2]+F[i*2+1];
     39 }
     40 void ins(int i,int l,int r,int ll,int rr,long long w)
     41 {
     42     if((ll<=l)&&(r<=rr))
     43     {
     44         tag[i]+=w;f[i]+=w*(long long)(r-l+1);return;
     45     }
     46     int mid=(l+r)/2;
     47     if(ll<=mid)ins(i*2,l,mid,ll,rr,w);if(mid+1<=rr)ins(i*2+1,mid+1,r,ll,rr,w);
     48     f[i]=tag[i]*(long long)(r-l+1)+f[i*2]+f[i*2+1];
     49 }
     50 long long ASK(int i,int l,int r,int ll,int rr)
     51 {
     52     if((ll<=l)&&(r<=rr))return F[i];
     53     int mid=(l+r)/2;long long tmp=Tag[i]*(long long)(min(rr,r)-max(ll,l)+1);
     54     if(ll<=mid)tmp+=ASK(i*2,l,mid,ll,rr);if(mid+1<=rr)tmp+=ASK(i*2+1,mid+1,r,ll,rr);
     55     return tmp;
     56 }
     57 long long ask(int i,int l,int r,int ll,int rr)
     58 {
     59     if((ll<=l)&&(r<=rr))return f[i];
     60     int mid=(l+r)/2;long long tmp=tag[i]*(long long)(min(rr,r)-max(ll,l)+1);
     61     if(ll<=mid)tmp+=ask(i*2,l,mid,ll,rr);if(mid+1<=rr)tmp+=ask(i*2+1,mid+1,r,ll,rr);
     62     return tmp;
     63 }
     64 int main()
     65 {
     66     int n=read(),m=read();
     67     for(int i=1;i<=n;i++)a[i]=read();
     68     a[0]=-inf;
     69     int top=0;st[0]=0;
     70     for(int i=1;i<=n;i++)
     71     {
     72         while(a[st[top]]>=a[i]){L[st[top]]=st[top-1]+1;R[st[top]]=i-1;top--;}
     73         st[++top]=i;
     74     }
     75     while(top){L[st[top]]=st[top-1]+1;R[st[top]]=n;top--;}
     76     for(int i=1;i<=n;i++)
     77     {
     78         if(L[i]<=R[i])
     79         {
     80             data[++tt].w=a[i];data[tt].l=L[i];data[tt].r=i;data[tt].ps=i;data[tt].dd=1;
     81             data[++tt].w=a[i];data[tt].l=L[i];data[tt].r=i;data[tt].ps=R[i]+1;data[tt].dd=-1;
     82         }
     83     }
     84     sort(data+1,data+tt+1,cmp1);
     85     for(int i=1;i<=m;i++)
     86     {
     87         l=read();r=read();
     88         op[++tot].id=i;op[tot].l=l;op[tot].r=r;op[tot].ps=r;op[tot].dd=1;
     89         op[++tot].id=i;op[tot].l=l;op[tot].r=r;op[tot].ps=l-1;op[tot].dd=-1;
     90     }
     91     sort(op+1,op+tot+1,cmp2);int j=1;
     92     for(int i=1;i<=tot;i++)
     93     {
     94         while((data[j].ps<=op[i].ps)&&(j<=tt))
     95         {
     96             long long now=data[j].ps;long long w=now*(long long)data[j].w;
     97             INS(1,1,n,data[j].l,data[j].r,w*data[j].dd);
     98             ins(1,1,n,data[j].l,data[j].r,data[j].w*data[j].dd);
     99             j++;
    100         }
    101         long long w;
    102         w=ask(1,1,n,op[i].l,op[i].r)*(long long)(op[i].ps+1);
    103         w=w-ASK(1,1,n,op[i].l,op[i].r);
    104         ans[op[i].id]+=w*op[i].dd;
    105     }
    106     for(int i=1;i<=m;i++)printf("%lld
    ",ans[i]);
    107     return 0;
    108 }
    View Code
     
  • 相关阅读:
    django之创建第3个项目:编写第一个模板文件
    django之创建第2个项目
    django之创建第1个项目并查看网页效果
    python 第三库卸载办法
    django之环境变量配置
    数据库中的函数研究
    数据库中的 Date 函数研究
    数据库查询语句研究
    tablib.Dataset()操作exl类型数据之“类方法”研究
    tablib把数据导出为Excel、JSON、CSV等格式的Py库(写入数据并导出exl)
  • 原文地址:https://www.cnblogs.com/oldjang/p/6913325.html
Copyright © 2011-2022 走看看