zoukankan      html  css  js  c++  java
  • CF862B Mahmoud and Ehab and the bipartiteness 二分图染色判定

    (color{#0066ff}{题目描述})

    给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立

    (color{#0066ff}{输入格式})

    The first line of input contains an integer n — the number of nodes in the tree ( (1<=n<=10^{5}) ).

    The next n−1 lines contain integers u and v ( (1<=u,v<=n u≠v u≠v) ) — the description of the edges of the tree.

    It's guaranteed that the given graph is a tree.

    (color{#0066ff}{输出格式})

    Output one integer — the maximum number of edges that Mahmoud and Ehab can add to the tree while fulfilling the conditions.

    (color{#0066ff}{输入样例})

    5
    1 2
    2 3
    3 4
    4 5
    

    (color{#0066ff}{输出样例})

    2
    

    (color{#0066ff}{题解})

    先二分图染色(原图一定是二分图)

    分别统计颜色为1和0的数量

    开数组记录每个节点的度

    显然du就是它已经连的和它颜色相反的节点的个数

    因为要求做多连多少边,为了保证性质,只要颜色不同就行,所以剩下的总数-du个点都可以连边

    每条边会被算两次,最后/2

    #include<cstdio>
    #include<queue>
    #include<vector>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cctype>
    #include<cmath>
    #define _ 0
    #define LL long long
    #define Space putchar(' ')
    #define Enter putchar('
    ')
    #define fuu(x,y,z) for(int x=(y),x##end=z;x<=x##end;x++)
    #define fu(x,y,z)  for(int x=(y),x##end=z;x<x##end;x++)
    #define fdd(x,y,z) for(int x=(y),x##end=z;x>=x##end;x--)
    #define fd(x,y,z)  for(int x=(y),x##end=z;x>x##end;x--)
    #define mem(x,y)   memset(x,y,sizeof(x))
    #ifndef olinr
    inline char getc()
    {
    	static char buf[100001],*p1=buf,*p2=buf;
    	return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100001,stdin),p1==p2)? EOF:*p1++;
    }
    #else
    #define getc() getchar()
    #endif
    template<typename T>inline void in(T &x)
    {
    	int f=1; char ch; x=0;
    	while(!isdigit(ch=getc()))(ch=='-')&&(f=-f);
    	while(isdigit(ch)) x=x*10+(ch^48),ch=getc();
    	x*=f;
    }
    struct node
    {
    	int to;
    	node *nxt;
    };
    typedef node* nod; 
    nod head[105005];
    int n;
    int col[105005],du[105050],num1,num0;
    LL ans;
    inline void dfs(int x,int c)
    {
    	col[x]=c;
    	for(nod i=head[x];i;i=i->nxt)
    	{
    		if(~col[i->to]) continue;
    		dfs(i->to,c^1);
    	}	
    }
    inline void add(int from,int to)
    {
    	nod t=new node();
    	t->to=to;
    	t->nxt=head[from];
    	head[from]=t;
    }
    int main()
    {
    	int x,y;
    	in(n);
    	fuu(i,1,n) col[i]=-1;
    	fuu(i,1,n-1) in(x),in(y),du[x]++,du[y]++,add(x,y),add(y,x);
    	dfs(1,0);
    	fuu(i,1,n) col[i]? num1++:num0++;
    	fuu(i,1,n) ans+=(col[i]? num0:num1)-du[i];
    	printf("%lld
    ",ans>>1);
    	return ~~(0^_^0);
    }
    
  • 相关阅读:
    images have the “stationarity” property, which implies that features that are useful in one region are also likely to be useful for other regions.
    算法报告
    word2vec_basic.py
    Softmax_function
    Convex combination
    函数的光滑化或正则化 卷积 应用 两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积
    world embedding 嵌入
    dump json 显示中文问题
    dump json 显示中文问题
    perl $d = encode_utf8($r); $f = decode_json($d)
  • 原文地址:https://www.cnblogs.com/olinr/p/10045932.html
Copyright © 2011-2022 走看看