(color{#0066ff}{ 题目描述 })
小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。
(color{#0066ff}{输入格式})
一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。第二行,|S|个整数,表示集合S中的所有元素。
(color{#0066ff}{输出格式})
一行,一个整数,表示你求出的种类数mod 1004535809的值。
(color{#0066ff}{输入样例})
4 3 1 2
1 2
(color{#0066ff}{输出样例})
8
(color{#0066ff}{数据范围与提示})
对于10%的数据,1<=N<=1000;
对于30%的数据,3<=M<=100;
对于60%的数据,3<=M<=800;
对于全部的数据,1<=N<=10^9,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复
(color{#0066ff}{ 题解 })
乘法在这里很不好处理
m为质数又很小,这让我们可以想到原根
如果在mod m意义下,g的0--->m-2次幂mod m各不相同,那么g就称作m的一个原根
质数一定有原根
有关原根,详见巨佬blog
这样乘法就被转化为了加法
直接FFT套快速幂 ,注意和是在mod(m-2)意义下的,所以统计的时候要把后面的都算回来
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 100;
const int mod = 1004535809;
using std::vector;
int r[maxn], len;
int a[maxn], b[maxn], root, mp[maxn];
LL ksm(LL x, LL y, LL z) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % z;
x = x * x % z;
y >>= 1;
}
return re;
}
void FNTT(vector<int> &A, int flag) {
A.resize(len);
for(int i = 0; i < len; i++) if(i < r[i]) std::swap(A[i], A[r[i]]);
for(int l = 1; l < len; l <<= 1) {
int w0 = ksm(3, (mod - 1) / (l << 1), mod);
for(int i = 0; i < len; i += (l << 1)) {
int w = 1, a0 = i, a1 = i + l;
for(int k = 0; k < l; k++, a0++, a1++, w = 1LL * w0 * w % mod) {
int tmp = 1LL * A[a1] * w % mod;
A[a1] = ((A[a0] - tmp) % mod + mod) % mod;
A[a0] = (A[a0] + tmp) % mod;
}
}
}
if(!(~flag)) {
std::reverse(A.begin() + 1, A.end());
int inv = ksm(len, mod - 2, mod);
for(int i = 0; i < len; i++) A[i] = 1LL * A[i] * inv % mod;
}
}
vector<int> work(vector<int> A, vector<int> B, int m) {
A.resize(m - 1), B.resize(m - 1);
int tot = A.size() + B.size() - 1;
for(len = 1; len <= tot; len <<= 1);
for(int i = 0; i < len; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
FNTT(A, 1), FNTT(B, 1);
vector<int> tmp;
for(int i = 0; i < len; i++) tmp.push_back(1LL * A[i] * B[i] % mod);
FNTT(tmp, -1);
vector<int> ans;
ans.resize(m - 1);
for(int i = 0; i < len; i++) (ans[i % (m - 1)] += tmp[i]) %= mod;
return ans;
}
int getroot(int m) {
for(int i = 2; i < m; i++) {
int res = m - 1;
for(int j = 2; j <= res; j++) {
if(res % j == 0) {
while(res % j == 0) res /= j;
if(ksm(i, (m - 1) / j, m) == 1) break;
}
if(j >= res) return i;
}
}
return 233;
}
vector<int> ksm(vector<int> A, int b, int m) {
vector<int> ans;
ans.push_back(1);
while(b) {
if(b & 1) ans = work(ans, A, m);
A = work(A, A, m);
b >>= 1;
}
return ans;
}
int main() {
int _ = in(), m = in(), x = in(), num = in(), n = 0;
for(int i = 1; i <= num; i++) {
int t = in();
if(t) a[++n] = t;
}
root = getroot(m);
for(int i = 0; i <= m - 2; i++) mp[ksm(root, i, m)] = i;
for(int i = 1; i <= n; i++) b[i] = mp[a[i]];
int xx = 0;
for(int i = 0; i < m; i++) if(ksm(root, i, m) == x % m) { xx = i; break; }
vector<int> f;
f.resize(m - 1);
for(int i = 1; i <= n; i++) f[b[i]] = 1;
f = ksm(f, _, m);
printf("%d
", f[xx] % mod);
return 0;
}