zoukankan      html  css  js  c++  java
  • P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案

    $ color{#0066ff}{ 题目描述 }$

    佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物。生日礼物放在一个神奇的箱子中。箱子外边写了一个长为n的字符串s,和m个问题。佳媛姐姐必须正确回答这m个问题,才能打开箱子拿到礼物,升职加薪,出任CEO,嫁给高富帅,走上人生巅峰。每个问题均有a,b,c,d四个参数,问你子串s[a..b]的所有子串和s[c..d]的最长公共前缀的长度的最大值是多少?佳媛姐姐并不擅长做这样的问题,所以她向你求助,你该如何帮助她呢?

    (color{#0066ff}{输入格式})

    输入的第一行有两个正整数n,m,分别表示字符串的长度和询问的个数。接下来一行是一个长为n的字符串。接下来m行,每行有4个数a,b,c,d,表示询问s[a..b]的所有子串和s[c..d]的最长公共前缀的最大值。

    (color{#0066ff}{输出格式})

    对于每一次询问,输出答案。

    (color{#0066ff}{输入样例})

    5 5
    aaaaa
    1 1 1 5
    1 5 1 1
    2 3 2 3
    2 4 2 3
    2 3 2 4
    

    (color{#0066ff}{输出样例})

    1
    1
    2
    2
    2
    

    (color{#0066ff}{数据范围与提示})

    对于10%的数据,1<=n,m<=3,00,

    对于40%的数据,1<=n,m<=3,000,字符串中仅有a,b

    对于100%的数据,1<=n,m<=100,000,字符串中仅有小写英文字母,a<=b,c<=d,1<=a,b,c,d<=n

    (color{#0066ff}{题解})

    要求LCP,当然是SA啦

    考虑暴力,枚举([l,r])每个位置,每次取max(注意卡边界)

    因为LCP是区间的min,所以我们找到(rk[c])的前驱后继RMQ一下不就行啦?

    不行!

    需要二分答案!!

    为什么呢??

    举个栗子

    (a = 1, b= 10, c =20, d = 30,即[1,10],[20,30])

    20位置和9位置的LCP的长度为200

    但是由于区间限制,答案就成了(10-9+1=2)

    而1位置和20位置的LCP为3,没有超过边界,所以就是3, 显然更优

    也就是说,LCP最大,答案不一定最优!!!

    所以我们二分答案,假设当前二分的是mid,那么显然合法的端点区间为([a,b-mid+1])

    我们在这个区间找前驱后继即可

    怎么找??区间前驱后继??树套树??

    主席树不得了。。

    TM,RMQ写错调了1.5h

    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 1e5 + 10;
    int sa[maxn], rk[maxn], x[maxn], y[maxn], c[maxn], n, q, h[maxn], f[maxn][20], lg[maxn];
    char s[maxn];
    struct node {
    	node *ch[2];
    	int num;
    	node() { num = 0; ch[0] = ch[1] = NULL; }
    }*root[maxn];
    void init() {
    	root[0] = new node();
    	root[0]->ch[0] = root[0]->ch[1] = root[0];
    }
    void add(node *&o, node *lst, int l, int r, int p) {
    	o = new node();
    	*o = *lst;
    	o->num++;
    	if(l == r) return;
    	int mid = (l + r) >> 1;
    	if(p <= mid) add(o->ch[0], lst->ch[0], l, mid, p);
    	else add(o->ch[1], lst->ch[1], mid + 1, r, p);
    }
    int pre(node *x, node *y, int l, int r, int p) {
    	if(x->num == y->num) return -1;
    	if(l == r) return l;
    	int mid = (l + r) >> 1;
    	if(p <= mid + 1) return pre(x->ch[0], y->ch[0], l, mid, p);
    	int ans = pre(x->ch[1], y->ch[1], mid + 1, r, p);
    	if(~ans) return ans;
    	return pre(x->ch[0], y->ch[0], l, mid, p);
    }
    int nxt(node *x, node *y, int l, int r, int p) {
    	if(x->num == y->num) return -1;
    	if(l == r) return l;
    	int mid = (l + r) >> 1;
    	if(p >= mid) return nxt(x->ch[1], y->ch[1], mid + 1, r, p);
    	int ans = nxt(x->ch[0], y->ch[0], l, mid, p);
    	if(~ans) return ans;
    	return nxt(x->ch[1], y->ch[1], mid + 1, r, p);
    }
    void SA() {
    	int m = 122;
    	for(int i = 1; i <= n; i++) c[x[i] = s[i]]++;
    	for(int i = 1; i <= m; i++) c[i] += c[i - 1];
    	for(int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
    	for(int k = 1; k <= n; k <<= 1) {
    		int num = 0;
    		for(int i = n - k + 1; i <= n; i++) y[++num] = i;
    		for(int i = 1; i <= n; i++) if(sa[i] > k) y[++num] = sa[i] - k;
    		for(int i = 1; i <= m; i++) c[i] = 0;
    		for(int i = 1; i <= n; i++) c[x[i]]++;
    		for(int i = 1; i <= m; i++) c[i] += c[i - 1];
    		for(int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i], y[i] = 0;
    		std::swap(x, y);
    		x[sa[1]] = 1, num = 1;
    		for(int i = 2; i <= n; i++) x[sa[i]] = (y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k])? num : ++num;
    		if(num == n) break;
    		m = num;
    	}
    	for(int i = 1; i <= n; i++) rk[i] = x[i];
    	int H = 0;
    	for(int i = 1; i <= n; i++) {
    		if(rk[i] == 1) continue;
    		if(H) H--;
    		int j = sa[rk[i] - 1];
    		while(i + H <= n && j + H <= n && s[i + H] == s[j + H]) H++;
    		h[rk[i]] = H;
    	}
    	for(int i = 1; i <= n; i++) f[i][0] = h[i];
    	for(int j = 1; j <= 18; j++)
    		for(int i = 1; i + (1 << j) - 1 <= n; i++)
    			f[i][j] = std::min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
    	lg[0] = -1;
    	for(int i = 1; i <= n; i++) lg[i] = lg[i >> 1] + 1;
    }
    int query(int l, int r) {
    	if(l > r) std::swap(l, r);
    	if(l == r) return n - sa[l] + 1;
    	l++;
    	int len = lg[r - l + 1];
    	assert(l != 1);
    	return std::min(f[l][len], f[r - (1 << len) + 1][len]);
    }
    bool ok(int a, int b, int c, int d, int mid) {
    	int l = a, r = b - mid + 1, ans = 0;
    	if(l > r) return false;
    	int L = rk[c] == 1? -1 : pre(root[l - 1], root[r], 1, n, rk[c]);
    	int R = rk[c] == n? -1 : nxt(root[l - 1], root[r], 1, n, rk[c]);
    	if(~L) ans = std::max(ans, query(L, rk[c]));
    	if(~R) ans = std::max(ans, query(rk[c], R));
    	return ans >= mid;
    }
    void predoit() {
    	init();
    	for(int i = 1; i <= n; i++) add(root[i], root[i - 1], 1, n, rk[i]);
    }
    int main() {
    	n = in(), q = in();
    	scanf("%s", s + 1);
    	SA();
    	predoit();
    	int a, b, c, d;
    	while(q --> 0) {
    		a = in(), b = in(), c = in(), d = in();
    		int l = 1, r = std::min(d - c, b - a) + 1, ans = 0;
    		while(l <= r) {
    			int mid = (l + r) >> 1;
    			if(ok(a, b, c, d, mid)) ans = mid, l = mid + 1;
    			else r = mid - 1;
    		}
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    [灵魂拷问]MySQL面试高频100问(工程师方向)
    前后端分离模式下的权限设计方案
    Netty实战:设计一个IM框架
    超实用,Linux中查看文本的小技巧
    Java面试,如何在短时间内做突击
    挑战10个最难回答的Java面试题(附答案)
    SpringBoot是如何动起来的
    Lab_2_SysOps_VPC_Linux_v2.5
    Lab_1_SysOps_Compute_Linux_v2.5
    change-resource-tags.sh
  • 原文地址:https://www.cnblogs.com/olinr/p/10426610.html
Copyright © 2011-2022 走看看