zoukankan      html  css  js  c++  java
  • 1. 装饰器入门

    原文链接: http://www.cnblogs.com/huxi/archive/2011/03/01/1967600.html

    1.1. 需求是怎么来的?

    装饰器的定义很是抽象,我们来看一个小例子。

    1
    2
    3
    4
    def foo():
        print 'in foo()'
     
    foo()

    这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

    1
    2
    3
    4
    5
    6
    7
    8
    import time
    def foo():
        start = time.clock()
        print 'in foo()'
        end = time.clock()
        print 'used:', end - start
     
    foo()

    很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。

    怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?

    1.2. 以不变应万变,是变也

    还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    import time
     
    def foo():
        print 'in foo()'
     
    def timeit(func):
        start = time.clock()
        func()
        end =time.clock()
        print 'used:', end - start
     
    timeit(foo)

    看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。

    1.3. 最大限度地少改动!

    既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    #-*- coding: UTF-8 -*-
    import time
     
    def foo():
        print 'in foo()'
     
    # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
    def timeit(func):
         
        # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
        def wrapper():
            start = time.clock()
            func()
            end =time.clock()
            print 'used:', end - start
         
        # 将包装后的函数返回
        return wrapper
     
    foo = timeit(foo)
    foo()

    这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。

    这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)

    2. Python的额外支持

    2.1. 语法糖

    上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    import time
     
    def timeit(func):
        def wrapper():
            start = time.clock()
            func()
            end =time.clock()
            print 'used:', end - start
        return wrapper
     
    @timeit
    def foo():
        print 'in foo()'
     
    foo()

    重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。

    2.2. 内置的装饰器

    内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也非常低。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    class Rabbit(object):
         
        def __init__(self, name):
            self._name = name
         
        @staticmethod
        def newRabbit(name):
            return Rabbit(name)
         
        @classmethod
        def newRabbit2(cls):
            return Rabbit('')
         
        @property
        def name(self):
            return self._name

    这里定义的属性是一个只读属性,如果需要可写,则需要再定义一个setter:

    1
    2
    3
    @name.setter
    def name(self, name):
        self._name = name

    1. 装饰器入门

    1.1. 需求是怎么来的?

    装饰器的定义很是抽象,我们来看一个小例子。

    1
    2
    3
    4
    def foo():
        print 'in foo()'
     
    foo()

    这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

    1
    2
    3
    4
    5
    6
    7
    8
    import time
    def foo():
        start = time.clock()
        print 'in foo()'
        end = time.clock()
        print 'used:', end - start
     
    foo()

    很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。

    怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?

    1.2. 以不变应万变,是变也

    还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    import time
     
    def foo():
        print 'in foo()'
     
    def timeit(func):
        start = time.clock()
        func()
        end =time.clock()
        print 'used:', end - start
     
    timeit(foo)

    看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。

    1.3. 最大限度地少改动!

    既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    #-*- coding: UTF-8 -*-
    import time
     
    def foo():
        print 'in foo()'
     
    # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
    def timeit(func):
         
        # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
        def wrapper():
            start = time.clock()
            func()
            end =time.clock()
            print 'used:', end - start
         
        # 将包装后的函数返回
        return wrapper
     
    foo = timeit(foo)
    foo()

    这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。

    这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)

    2. Python的额外支持

    2.1. 语法糖

    上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    import time
     
    def timeit(func):
        def wrapper():
            start = time.clock()
            func()
            end =time.clock()
            print 'used:', end - start
        return wrapper
     
    @timeit
    def foo():
        print 'in foo()'
     
    foo()

    重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。

    2.2. 内置的装饰器

    内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也非常低。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    class Rabbit(object):
         
        def __init__(self, name):
            self._name = name
         
        @staticmethod
        def newRabbit(name):
            return Rabbit(name)
         
        @classmethod
        def newRabbit2(cls):
            return Rabbit('')
         
        @property
        def name(self):
            return self._name

    这里定义的属性是一个只读属性,如果需要可写,则需要再定义一个setter:

    1
    2
    3
    @name.setter
    def name(self, name):
        self._name = name
  • 相关阅读:
    [OpenCV]基于arm64和Python2、Python3的opencv-python-contrib编译
    [Jupyter_Notebook]Windows下Jupyter-Notebook更换默认目录
    【Vmware】NAT模式下网络无法连接
    COCO数据集转mask
    [COCO数据集]关于instances中的分割信息按部分类别进行获取及保存
    Leetcode147-对链表进行插入排序(Python3实现)
    Leetcode1415-长度为 n 的开心字符串中字典序第 k 小的字符串(Python3实现)
    Leetcode1353-最多可以参加的会议数目(Python3实现)
    RabbitMQ 官方NET教程(六)【RPC】
    RabbitMQ 官方NET教程(五)【Topic】
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/7216297.html
Copyright © 2011-2022 走看看