zoukankan      html  css  js  c++  java
  • numpy.argsort详解

    numpy.argsort(aaxis=-1kind='quicksort'order=None)[source]

    Returns the indices that would sort an array.

    Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

    Parameters:

    a : array_like

    Array to sort.

    axis : int or None, optional

    Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

    kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

    Sorting algorithm.

    order : str or list of str, optional

    When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

    Returns:

    index_array : ndarray, int

    Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a.

    See also

    sort
    Describes sorting algorithms used.
    lexsort
    Indirect stable sort with multiple keys.
    ndarray.sort
    Inplace sort.
    argpartition
    Indirect partial sort.

    Notes

    See sort for notes on the different sorting algorithms.

    As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

    Examples

    One dimensional array:

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])
    

    Two-dimensional array:

    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])
    
    >>> np.argsort(x, axis=0)  # sorts along first axis (down)
    array([[0, 1],
           [1, 0]])
    
    >>> np.argsort(x, axis=1)  # sorts along last axis (across)
    array([[0, 1],
           [0, 1]])
    

    Indices of the sorted elements of a N-dimensional array:

    >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
    >>> ind
    (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
    >>> x[ind]  # same as np.sort(x, axis=None)
    array([0, 2, 2, 3])
    

    Sorting with keys:

    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])
    
    >>> np.argsort(x, order=('x','y'))
    array([1, 0])
    
    >>> np.argsort(x, order=('y','x'))
    array([0, 1])
  • 相关阅读:
    20201227《信息安全专业导论》第八周学习总结
    20201227任峰皓《信息安全导论》第七周学习总结
    20201227任峰皓《信息安全导论》第六周学习总结
    斐波那契数列递归实现
    求最大公约数伪代码
    20201227 获奖感言与学习心得
    20201227任峰皓《信息安全导论》第五周学习总结
    xor加密
    pep9作业
    20201227任峰皓《信息安全导论》第四周学习总结
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/9118095.html
Copyright © 2011-2022 走看看