zoukankan      html  css  js  c++  java
  • numpy.argsort详解

    numpy.argsort(aaxis=-1kind='quicksort'order=None)[source]

    Returns the indices that would sort an array.

    Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

    Parameters:

    a : array_like

    Array to sort.

    axis : int or None, optional

    Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

    kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

    Sorting algorithm.

    order : str or list of str, optional

    When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

    Returns:

    index_array : ndarray, int

    Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a.

    See also

    sort
    Describes sorting algorithms used.
    lexsort
    Indirect stable sort with multiple keys.
    ndarray.sort
    Inplace sort.
    argpartition
    Indirect partial sort.

    Notes

    See sort for notes on the different sorting algorithms.

    As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

    Examples

    One dimensional array:

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])
    

    Two-dimensional array:

    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])
    
    >>> np.argsort(x, axis=0)  # sorts along first axis (down)
    array([[0, 1],
           [1, 0]])
    
    >>> np.argsort(x, axis=1)  # sorts along last axis (across)
    array([[0, 1],
           [0, 1]])
    

    Indices of the sorted elements of a N-dimensional array:

    >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
    >>> ind
    (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
    >>> x[ind]  # same as np.sort(x, axis=None)
    array([0, 2, 2, 3])
    

    Sorting with keys:

    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])
    
    >>> np.argsort(x, order=('x','y'))
    array([1, 0])
    
    >>> np.argsort(x, order=('y','x'))
    array([0, 1])
  • 相关阅读:
    修改VS中的附加依赖项的继承值
    cocos2dx的addChild接口设计
    svn cleanup失败解决方法
    vi显示中文乱码
    CentOS 7.4 shell 不显示当前用户和路径的问题
    生产工具的差距导致的生产力(生产效率)的差距
    GPU的历史:从固定管线到可编程管线再到通用计算平台
    聊Java中的任务调度的实现方法及比较
    Spring Boot 揭秘与实战之RabbitMQ
    一个让Java事半功倍的反射库
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/9118095.html
Copyright © 2011-2022 走看看