zoukankan      html  css  js  c++  java
  • python3爬虫之入门和正则表达式

    前面的python3入门系列基本上也对python入了门,从这章起就开始介绍下python的爬虫教程,拿出来给大家分享;爬虫说的简单,就是去抓取网路的数据进行分析处理;这章主要入门,了解几个爬虫的小测试,以及对爬虫用到的工具介绍,比如集合,队列,正则表达式;

    用python抓取指定页面:

    代码如下:

    import urllib.request
    
    url= "http://www.baidu.com"
    data = urllib.request.urlopen(url).read()#
    data = data.decode('UTF-8')
    print(data)
    

    urllib.request.urlopen(url)官方文档返回一个 http.client.HTTPResponse 对象, 这个对象又用到的read()方法;返回数据;这个函数返回一个 http.client.HTTPResponse 对象, 这个对象又有各种方法, 比如我们用到的read()方法;

    查找可变网址:

    import urllib
    import urllib.request
    data={}
    data['word']='one peace'
    url_values=urllib.parse.urlencode(data)
    url="http://www.baidu.com/s?"
    full_url=url+url_values
    a = urllib.request.urlopen(full_url)
    data=a.read()
    data=data.decode('UTF-8')
    print(data)
    ##打印出网址:
    a.geturl()
    
    

    data是一个字典, 然后通过urllib.parse.urlencode()来将data转换为 ‘word=one+peace’的字符串, 最后和url合并为full_url

    python正则表达式介绍:

    队列 介绍

    在爬虫的程序中用到了广度优先级算法,该算法用到了数据结构,当然你用list也可以实现队列,但是效率不高。现在在此处介绍下:
    在容器中有队列:collection.deque

    #队列简单测试:
    from collections import deque
    queue=deque(["peace","rong","sisi"])
    queue.append("nick")
    queue.append("pishi")
    print(queue.popleft())
    print(queue.popleft())
    print(queue)
    
    

    集合介绍:

    在爬虫程序中, 为了不重复爬那些已经爬过的网站, 我们需要把爬过的页面的url放进集合中, 在每一次要爬某一个url之前, 先看看集合里面是否已经存在. 如果已经存在, 我们就跳过这个url; 如果不存在, 我们先把url放入集合中, 然后再去爬这个页面.
    Python 还 包 含 了 一 个 数 据 类 型—— set ( 集 合 ) 。 集 合 是 一 个 无 序 不 重 复 元素 的 集 。 基 本 功 能 包 括 关 系 测 试 和 消 除 重 复 元 素 。 集 合 对 象 还 支 持 union( 联
    合),intersection(交),difference(差)和 sysmmetric difference(对称差集)等数学运算。
    大括号或 set() 函数可以用来创建集合。 注意:想要创建空集合,你必须使用set() 而不是 {} 。{}用于创建空字典;

    集合的创建演示如下:

     a={"peace","peace","rong","rong","nick"}
       print(a)
       "peace" in  a
       b=set(["peace","peace","rong","rong"])
       print(b)
       #演示联合
       print(a|b)
       #演示交
       print(a&b)
       #演示差
       print(a-b)
      #对称差集
      print(a^b)
    #输出:    
    {'peace', 'rong', 'nick'}
    {'peace', 'rong'}
    {'peace', 'rong', 'nick'}
    {'peace', 'rong'}
    {'nick'}
    {'nick'}
    

    正则表达式

    在爬虫时收集回来的一般是字符流,我们要从中挑选出url就要求有简单的字符串处理能力,而用正则表达式可以轻松的完成这一任务;
    正则表达式的步骤:1,正则表达式的编译 2,正则表达式匹配字符串 3,结果的处理
    下图列出了正则表达式的语法:
    语法
    在pytho中使用正则表达式,需要引入re模块;下面介绍下该模块中的一些方法;

    1.compile和match

    re模块中compile用于生成pattern的对象,再通过调用pattern实例的match方法处理文本最终获得match实例;通过使用match获得信息;

    import re
    
    # 将正则表达式编译成Pattern对象
    pattern = re.compile(r'rlovep')
    # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
    m = pattern.match('rlovep.com')
    if m:
    # 使用Match获得分组信息
        print(m.group())
    ### 输出 ###
    # rlovep
    

    re.compile(strPattern[, flag]):
    这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
    可选值有:

    re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)

    M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
    S(DOTALL): 点任意匹配模式,改变'.'的行为
    L(LOCALE): 使预定字符类 w W  B s S 取决于当前区域设定
    U(UNICODE): 使预定字符类 w W  B s S d D 取决于unicode定义的字符属性
    X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

    Match:
    Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

    
    属性:
    
    string: 匹配时使用的文本。
    re: 匹配时使用的Pattern对象。
    pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
    endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
    lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
    lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
    方法:
    
    group([group1, …]): 
    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
    groups([default]): 
    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
    groupdict([default]): 
    返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
    start([group]): 
    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
    end([group]): 
    返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
    span([group]): 
    返回(start(group), end(group))。
    expand(template): 
    将匹配到的分组代入template中然后返回。template中可以使用id或g<id>、 g<name>引用分组,但不能使用编号0。id与g<id>是等价的;但10将被认为是第10个分组,如果你想表达 1之后是字符'0',只能使用g<1>0。
    

    pattern:
    Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

    Pattern不能直接实例化,必须使用re.compile()进行构造。

    
    Pattern提供了几个可读属性用于获取表达式的相关信息:
    
    pattern: 编译时用的表达式字符串。
    flags: 编译时用的匹配模式。数字形式。
    groups: 表达式中分组的数量。
    groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
    实例方法[ | re模块方法]:
    
    match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]): 
    这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。 
    pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。 
    注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。 
    search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]): 
    这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。 pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
    split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]): 
    按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。
    findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]): 
    搜索string,以列表形式返回全部能匹配的子串。
    finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]): 
    搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
    sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]): 
    使用repl替换string中每一个匹配的子串后返回替换后的字符串。 当repl是一个字符串时,可以使用id或g<id>、g<name>引用分组,但不能使用编号0。 当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 count用于指定最多替换次数,不指定时全部替换。
    subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]): 
    返回 (sub(repl, string[, count]), 替换次数)。
    

    2.re.match(pattern, string, flags=0)

    函数参数说明:

    参数描述
    pattern匹配的正则表达式
    string要匹配的字符串。
    flags标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

    匹配成功re.match方法返回一个匹配的对象,否则返回None。

    我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

    匹配对象方法描述
    group(num=0)匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。
    groups()返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。

    演示如下:

    #re.match.
    import re
    print(re.match("rlovep","rlovep.com"))##匹配rlovep
    print(re.match("rlovep","rlovep.com").span())##从开头匹配rlovep
    print(re.match("com","http://rlovep.com"))##不再起始位置不能匹配成功
    ##输出:
    <_sre.SRE_Match object; span=(0, 6), match='rlovep'>
    (0, 6)
    None
    

    实例二:使用group

    import re
    
    line = "This is my blog"
    #匹配含有is的字符串
    matchObj = re.match( r'(.*) is (.*?) .*', line, re.M|re.I)
    #使用了组输出:当group不带参数是将整个匹配成功的输出
    #当带参数为1时匹配的是最外层左边包括的第一个括号,一次类推;
    if matchObj:
        print ("matchObj.group() : ", matchObj.group())#匹配整个
        print ("matchObj.group(1) : ", matchObj.group(1))#匹配的第一个括号
        print ("matchObj.group(2) : ", matchObj.group(2))#匹配的第二个括号
    else:
        print ("No match!!")
    
    #输出:
    
    matchObj.group() :  This is my blog
    matchObj.group(1) :  This
    matchObj.group(2) :  my
    
    


    3re.search方法

    re.search 扫描整个字符串并返回第一个成功的匹配。

    函数语法:


    re.search(pattern, string, flags=0)

    函数参数说明:

    参数描述
    pattern匹配的正则表达式
    string要匹配的字符串。
    flags标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

    匹配成功re.search方法返回一个匹配的对象,否则返回None。

    我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

    匹配对象方法描述
    group(num=0)匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。
    groups()返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。


    实例一:

    import re
    print(re.search("rlovep","rlovep.com").span())
    print(re.search("com","http://rlovep.com").span())
    #输出:
    import re
    print(re.search("rlovep","rlovep.com").span())
    print(re.search("com","http://rlovep.com").span())
    

    实例二:

    import re
    
    line = "This is my blog"
    #匹配含有is的字符串
    matchObj = re.search( r'(.*) is (.*?) .*', line, re.M|re.I)
    #使用了组输出:当group不带参数是将整个匹配成功的输出
    #当带参数为1时匹配的是最外层左边包括的第一个括号,一次类推;
    if matchObj:
        print ("matchObj.group() : ", matchObj.group())#匹配整个
        print ("matchObj.group(1) : ", matchObj.group(1))#匹配的第一个括号
        print ("matchObj.group(2) : ", matchObj.group(2))#匹配的第二个括号
    else:
        print ("No match!!")
    #输出:
    matchObj.group() :  This is my blog
    matchObj.group(1) :  This
    matchObj.group(2) :  my
    

    search和match区别:
    re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。

    python爬虫小试牛刀

    利用python抓取页面中所有的http协议的链接,并递归抓取子页面的链接。使用了集合和队列;此去爬的是我的网站,第一版很多bug;
    代码如下:

    import re
    import urllib.request
    import urllib
    
    from collections import deque
    #使用队列存放url
    queue = deque()
    #使用visited防止重复爬同一页面
    visited = set()
    
    url = 'http://rlovep.com'  # 入口页面, 可以换成别的
     #入队最初的页面
    queue.append(url)
    cnt = 0
    
    while queue:
      url = queue.popleft()  # 队首元素出队
      visited |= {url}  # 标记为已访问
    
      print('已经抓取: ' + str(cnt) + '   正在抓取 <---  ' + url)
      cnt += 1
    
      try:
          #抓取页面
          urlop = urllib.request.urlopen(url,timeout=10)
      except Exception:
          print("超时")
          continue
      #判断是否为html页面
      if 'html' not in urlop.getheader('Content-Type'):
        continue
    
      # 避免程序异常中止, 用try..catch处理异常
      try:
       #转换为utf-8码
        data = urlop.read().decode('utf-8')
      except:
        continue
    
      # 正则表达式提取页面中所有队列, 并判断是否已经访问过, 然后加入待爬队列
      linkre = re.compile("href=['"]([^"'>]*?)['"].*?")
      for x in linkre.findall(data):##返回所有有匹配的列表
        if 'http' in x and x not in visited:##判断是否为http协议链接,并判断是否抓取过
          queue.append(x)
          print('加入队列 --->  ' + x)
    

    结果如下:
    结果

    相关链接:

    python3入门之类
    python3入门之函数
    python3入门之循环
    python3之if语句
    python3入门之赋值语句介绍
    python3入门之print,import,input介绍
    python3入门之set
    python3入门之字典
    python3入门之字符串
    python3入门之列表和元组
    python3入门之软件安装
    python3爬虫之入门和正则表达式

  • 相关阅读:
    [读书笔记]子查询
    [读书笔记]SQL约束
    [转载]NoSQL数据库的基础知识
    利用C#实现对excel的写操作
    [转载]SQL Server内核架构剖析
    利用花生壳和IIS发布网页过程
    [读书笔记]ASP.NET的URL路由引擎
    [翻译]比较ADO.NET中的不同数据访问技术(Performance Comparison:Data Access Techniques)
    [正则表达式]基础知识总结
    CF623E Transforming Sequence
  • 原文地址:https://www.cnblogs.com/onepeace/p/4859041.html
Copyright © 2011-2022 走看看