zoukankan      html  css  js  c++  java
  • [Kattis]redblacktree(树形依赖背包,DP优化)

    Source : NAIPC 2018

    题意

    有棵树,树上有红点和黑点,要选出一系列没有祖孙关系的节点,满足红点恰好有m个,求方案数。
    (nle2*10^5)
    (mle 1000)

    题解

    可以用树形背包解决。
    (f[x][j])表示以x为根的树里,恰好选了j个红点的方案数。
    转移就大力分配红点个数就行。
    时间复杂度为(O(nm^2)),超时了。

    发现自己树形背包一直写假了,实际上树形背包的复杂度应该为(O(nm))

    Solution1

    对于每个节点,他的子树大小是有限的,可以证明如果把上限从背包容积m改成(siz[x])就可以把时间复杂度优化到(O(nm))
    证明链接

    #include <bits/stdc++.h>
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    const int mod = 1e9 + 7;
    int read(){
    	char c; int num, f = 1;
    	while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
    	while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
    	return f * num;
    }
    const int N = 2e5 + 9, M = 1e3 + 9;
    int f[N][M], n, m, col[N], tmp[N], siz[N];
    vector<int> son[N];
    void dfs(int x) {
    	f[x][0] = 1; siz[x] += col[x];
    	for(auto y : son[x]) {
    		dfs(y); siz[x] += siz[y];
    		for(int i = 0; i <= m; i++) tmp[i] = 0;
    		for(int i = 0; i <= m && i <= siz[x]; i++) if(f[x][i]){
    			for(int j = 0;  i + j <= m && j <= siz[y]; j++) if(f[y][j]){
    				tmp[i + j] = (tmp[i + j] + 1ll * f[x][i] * f[y][j] % mod) % mod;
    			}
    		}
    		for(int i = 0; i <= m; i++) f[x][i] = tmp[i];
    	}
    	if(col[x] == 1) f[x][1] = (1ll * f[x][1] + 1) % mod;
    	if(col[x] == 0) f[x][0] = (1ll * f[x][0] + 1) % mod;
    }
    signed main()
    {
    	n = read(); m = read();
    	for(int i = 2; i <= n; i++) 
    		son[read()].push_back(i);
    	for(int i = 1; i <= m; i++) 
    		col[read()] = 1;
    	dfs(1);
    	for(int i = 0; i <= m; i++)
    		printf("%d
    ", f[1][i]);
    	return 0;
    }
    /*
    f[x][k]表示以x的子树,取了k个红点的方案数
    f[x][a] * f[y][b] = f[x][a+b]
    O(n*m^2)
    */
    

    Solution2

    树形背包还可以按照dfs序处理。
    给树上节点按照后序遍历标号之后,顺序循环变成先处理子节点再处理父亲。
    (f[i][j])表示i之前的森林,取了j个红点方案数。
    转移可以是:
    当i不取时,(f[i][j]+=f[i-1][j])
    当i取时,他的子树就都不能取,由于子树是连续一段,按照(siz[x])跳过即可。
    (f[i][j] = f[i][j] + f[i - siz[i]][j - 1](col[i]==1))
    (f[i][j] = f[i][j] + f[i - siz[i]][j](col[i]==0))

    #include <bits/stdc++.h>
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
    	char c; int num, f = 1;
    	while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
    	while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
    	return f * num;
    }
    const int mod = 1e9 + 7;
    const int N = 2e5 + 1009;
    int n, m, f[N][1009], col[N], id[N], siz[N], cnt;
    vector<int> son[N];
    void dfs(int x) {
    	int tmp = 0;
    	for(auto y : son[x]) {
    		dfs(y);
    		tmp += siz[id[y]];
    	}
    	id[x] = ++cnt; siz[cnt] = tmp + 1;
    }
    signed main()
    {
    	n = read(); m = read();
    	for(int i = 2; i <= n; i++) 
    		son[read()].push_back(i);
    	dfs(1);
    	for(int i = 1; i <= m; i++)
    		col[id[read()]] = 1;
    	f[0][0] = 1;
    	for(int i = 1; i <= n; i++) {
    		for(int j = 0; j <= m; j++) {
    			f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
    			if(col[i] == 1 && j) f[i][j] = (f[i][j] + f[i - siz[i]][j - 1]) % mod;
    			if(col[i] == 0) f[i][j] = (f[i][j] + f[i - siz[i]][j]) % mod;
    		}
    	}
    	for(int i = 0; i <= m; i++) 
    		printf("%d
    ", f[n][i]);
    	return 0;
    }
    
  • 相关阅读:
    Postman模拟后端服务(mock server)
    Fiddler常用的几个功能
    Postman常用的几个功能
    Postman常用功能详解,常用请求方法
    sql小技巧
    postman接口数据关联
    postman批量发送多个请求
    sql去重查询语句
    pytho接口自动化-session
    charles抓包使用教程
  • 原文地址:https://www.cnblogs.com/onglublog/p/14380470.html
Copyright © 2011-2022 走看看