单调栈的妙处!!
刚看到这题差点写个splay。。但是后来看到询问范围的只是后L个数,因为当有一个数新进来且大于之前的数时,那之前的数全都没有用了,满足这种性质的序列可用单调栈维护
栈维护下标(因为要时刻确定查询位置),最后在询问的时候,用二分找到大于等于len - l + 1的第一个位置即为最大值
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C yql){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % yql)if(p & 1)ans = 1LL * x * ans % yql;
return ans;
}
const int N = 200005;
int s[N], tot, num[N];
int main(){
int m = read(), d = read(), t = 0, len = 0;
while(m --){
char opt; scanf("%c", &opt);
if(opt == 'A'){
int x = read();
x = (x + t) % d;
num[++len] = x;
while(tot > 0 && num[s[tot]] <= x) tot --;
s[++tot] = len;
}
else if(opt == 'Q'){
int l = read();
int index = lower_bound(s + 1, s + tot + 1, len - l + 1) - s;
t = num[s[index]];
printf("%d
", t);
}
}
return 0;
}