zoukankan      html  css  js  c++  java
  • BZOJ 1036 树的统计

    树链剖分

    捡起来好久没写的树剖。。。竟然没有写挂。。一次过了。。。
    就是用线段树来维护一颗树上的dfs序

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 30005;
    int n, cnt, dfn, head[N], depth[N], size[N], son[N], p[N], top[N], id[N], w[N], val[N];
    int tree[N<<2], m[N<<2];
    struct Edge { int v, next; } edge[N<<1];
    
    void addEdge(int a, int b){
        edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
    }
    
    void dfs1(int s, int fa){
        depth[s] = depth[fa] + 1;
        p[s] = fa;
        size[s] = 1;
        int child = -1;
        for(int i = head[s]; i != -1; i = edge[i].next){
            int u = edge[i].v;
            if(u == fa) continue;
            dfs1(u, s);
            size[s] += size[u];
            if(size[u] > child) child = size[u], son[s] = u;
        }
    }
    
    void dfs2(int s, int tp){
        id[s] = ++dfn;
        w[id[s]] = val[s];
        top[s] = tp;
        if(son[s] != -1) dfs2(son[s], tp);
        for(int i = head[s]; i != -1; i = edge[i].next){
            int u = edge[i].v;
            if(u == p[s] || u == son[s]) continue;
            dfs2(u, u);
        }
    }
    
    void push_up(int rt){
        tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
        m[rt] = max(m[rt << 1], m[rt << 1 | 1]);
    }
    
    void buildTree(int rt, int l, int r){
        if(l == r){
            tree[rt] = m[rt] = w[l];
            return;
        }
        int mid = (l + r) >> 1;
        buildTree(rt << 1, l, mid);
        buildTree(rt << 1 | 1, mid + 1, r);
        push_up(rt);
    }
    
    void modify(int rt, int l, int r, int k, int t){
        if(l == r){
            tree[rt] = m[rt] = t;
            return;
        }
        int mid = (l + r) >> 1;
        if(k <= mid) modify(rt << 1, l, mid, k, t);
        else modify(rt << 1 | 1, mid + 1, r, k, t);
        push_up(rt);
    }
    
    int queryMax(int rt, int l, int r, int queryL, int queryR){
        if(l == queryL && r == queryR){
            return m[rt];
        }
        int mid = (l + r) >> 1;
        if(queryL > mid) return queryMax(rt << 1 | 1, mid + 1, r, queryL, queryR);
        else if(queryR <= mid) return queryMax(rt << 1, l, mid, queryL, queryR);
        else return max(queryMax(rt << 1, l, mid, queryL, mid),
                        queryMax(rt << 1 | 1, mid + 1, r, mid + 1, queryR));
    }
    
    int querySum(int rt, int l, int r, int queryL, int queryR){
        if(l == queryL && r == queryR){
            return tree[rt];
        }
        int mid = (l + r) >> 1;
        if(queryL > mid) return querySum(rt << 1 | 1, mid + 1, r, queryL, queryR);
        else if(queryR <= mid) return querySum(rt << 1, l, mid, queryL, queryR);
        else return querySum(rt << 1, l, mid, queryL, mid) +
                    querySum(rt << 1 | 1, mid + 1, r, mid + 1, queryR);
    }
    
    int treeMax(int x, int y){
        int ret = -INF;
        while(top[x] != top[y]){
            if(depth[top[x]] < depth[top[y]]) swap(x, y);
            ret = max(ret, queryMax(1, 1, n, id[top[x]], id[x]));
            x = p[top[x]];
        }
        if(depth[x] > depth[y]) swap(x, y);
        return max(ret, queryMax(1, 1, n, id[x], id[y]));
    }
    
    int treeSum(int x, int y){
        int ret = 0;
        while(top[x] != top[y]){
            if(depth[top[x]] < depth[top[y]]) swap(x, y);
            ret += querySum(1, 1, n, id[top[x]], id[x]);
            x = p[top[x]];
        }
        if(depth[x] > depth[y]) swap(x, y);
        ret += querySum(1, 1, n, id[x], id[y]);
        return ret;
    }
    
    int main(){
    
        full(head, -1);
        full(son, -1);
        n = read();
        for(int i = 0; i < n - 1; i ++){
            int u = read(), v = read();
            addEdge(u, v), addEdge(v, u);
        }
        for(int i = 1; i <= n; i ++) val[i] = read();
        dfs1(1, 0), dfs2(1, 1);
        buildTree(1, 1, n);
        int q = read();
        while(q --){
            char opt[10]; scanf("%s", opt);
            if(opt[1] == 'H'){
                int x = read(), y = read();
                modify(1, 1, n, id[x], y);
            }
            else if(opt[1] == 'M'){
                int x = read(), y = read();
                printf("%d
    ", treeMax(x, y));
            }
            else if(opt[1] == 'S'){
                int x = read(), y = read();
                printf("%d
    ", treeSum(x, y));
            }
        }
        return 0;
    }
    
  • 相关阅读:
    *p++与(*p)++与*(p++)------自增运算符常见误区
    二维数组(解引用、指针数组、数组的指针)——C语言
    二叉树、前序遍历、中序遍历、后序遍历
    C语言参数传递(值传递、地址传递)+二级指针
    文件操作(FILE)与常用文件操作函数——C语言
    结构体(结构体嵌套、结构体指针、结构体参数传递)
    链表(单向链表的建立、删除、插入、打印)
    博文与文档发布玩法:Github + MWeb + 语雀 + Cnbolgs
    [笔记] Git 冲突处理
    [笔记] C# 如何获取文件的 MIME Type
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10658548.html
Copyright © 2011-2022 走看看