zoukankan      html  css  js  c++  java
  • BZOJ 2594 水管局长数据加强版

    LCT维护最小生成树

    要求两点路径最大的最小,首先想到的肯定是最小生成树,再加上有删边操作,那就得用LCT维护了。

    可是对于cut一条边,我们要时刻维护图中的最小生成树,需要把之前被我们淘汰的边找回,那无法处理,所以我们考虑和并查集一样的技巧,倒着离线处理问题。

    我们首先把询问中要删的边全部过滤掉,然后维护其他边产生的最小生成树,然后倒着回答每一个询问,把原来的删边变成连边,这样就方便多啦。

    每一个cut需要比较边的大小,所以我们可以用map来记录每条边的编号。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 400005;
    int n, m, q, tot, fa[N], mx[N], val[N], ch[N][2], id[N], rev[N], st[N], vis[N];
    map<pair<int, int>, int> r;
    vector<int> ans;
    struct Edge {
        int u, v, w;
        bool operator < (const Edge &rhs) const {
            return w < rhs.w;
        }
    }e[N<<2];
    struct Query{ int opt, u, v; } query[N<<2];
    
    int init(int v){
        ++tot;
        id[tot] = tot, val[tot] = mx[tot] = v;
        fa[tot] = ch[tot][0] = ch[tot][1] = rev[tot] = 0;
        return tot;
    }
    
    bool isRoot(int x){
        return ch[fa[x]][0] != x && ch[fa[x]][1] != x;
    }
    
    void reverse(int x){
        rev[x] ^= 1, swap(ch[x][0], ch[x][1]);
    }
    
    void push_up(int x){
        int l = ch[x][0], r = ch[x][1];
        mx[x] = val[x], id[x] = x;
        if(mx[l] > mx[x]) mx[x] = mx[l], id[x] = id[l];
        if(mx[r] > mx[x]) mx[x] = mx[r], id[x] = id[r];
    }
    
    void push_down(int x){
        if(rev[x]){
            rev[x] ^= 1;
            if(ch[x][0]) reverse(ch[x][0]);
            if(ch[x][1]) reverse(ch[x][1]);
        }
    }
    
    void rotate(int x){
        int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1;
        ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y;
        if(!isRoot(y)) ch[z][ch[z][1] == y] = x;
        fa[x] = z, fa[y] = x, ch[x][p] = y;
        push_up(y), push_up(x);
    }
    
    void splay(int x){
        int pos = 0; st[++pos] = x;
        for(int i = x; !isRoot(i); i = fa[i]) st[++pos] = fa[i];
        while(pos) push_down(st[pos--]);
        while(!isRoot(x)){
            int y = fa[x], z = fa[y];
            if(!isRoot(y)) (ch[y][0] == x) ^ (ch[z][0] == y) ? rotate(x) : rotate(y);
            rotate(x);
        }
        push_up(x);
    }
    
    void access(int x){
        for(int p = 0; x; p = x, x = fa[x])
            splay(x), ch[x][1] = p, push_up(x);
    }
    
    void makeRoot(int x){
        access(x), splay(x), reverse(x);
    }
    
    int findRoot(int x){
        access(x), splay(x);
        while(ch[x][0]) push_down(x), x = ch[x][0];
        splay(x);
        return x;
    }
    
    bool isConnect(int x, int y){
        makeRoot(x);
        return findRoot(y) == x;
    }
    
    void link(int x, int y){
        makeRoot(x), fa[x] = y;
    }
    
    void split(int x, int y){
        makeRoot(x), access(y), splay(y);
    }
    
    int main(){
    
        n = read(), m = read(), q = read();
        for(int i = 1; i <= n; i ++) init(0);
        for(int i = 0; i < m; i ++){
            e[i].u = read(), e[i].v = read(), e[i].w = read();
            if(e[i].u > e[i].v) swap(e[i].u, e[i].v);
        }
        sort(e, e + m);
        for(int i = 0; i < m; i ++) r[make_pair(e[i].u, e[i].v)] = i;
        for(int i = 0; i < q; i ++){
            query[i].opt = read(), query[i].u = read(), query[i].v = read();
            if(query[i].u > query[i].v) swap(query[i].u, query[i].v);
            if(query[i].opt == 2) vis[r[make_pair(query[i].u, query[i].v)]] = true;
        }
        int cnt = 0;
        for(int i = 0; i < m; i ++){
            if(cnt == n - 1) break;
            if(vis[i]) continue;
            int u = e[i].u, v = e[i].v, t = init(e[i].w);
            if(isConnect(u, v)) continue;
            link(u, t), link(t, v), cnt ++;
        }
        for(int i = q - 1; i >= 0; i --){
            int u = query[i].u, v = query[i].v, opt = query[i].opt;
            if(opt == 1){
                split(u, v);
                ans.push_back(mx[v]);
            }
            else{
                split(u, v);
                int d = r[make_pair(u, v)];
                if(e[d].w > mx[v]) continue;
                int tmp = id[v], t = init(e[d].w);
                splay(tmp);
                fa[ch[tmp][0]] = fa[ch[tmp][1]] = 0;
                ch[tmp][0] = ch[tmp][1] = 0;
                link(u, t), link(t, v);
            }
        }
        for(int i = ans.size() - 1; i >= 0; i --){
            printf("%d
    ", ans[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    [Kotlin] Open Classes and Inheritance
    [Kotlin] Class
    [Kotlin] Reverse a List with downTo
    [Kotlin] Named loop
    [Kotlin] for loop
    [Kotlin] Array List ArrayList
    深度解读 java 线程池设计思想及源码实现
    源码实战 | 从线程池理论聊聊为什么要看源码
    自己实现一个简单的线程池
    死磕 java线程系列之自己动手写一个线程池(续)
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10746199.html
Copyright © 2011-2022 走看看