zoukankan      html  css  js  c++  java
  • BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp

    dp真的是难。。不看题解完全不知道状态转移方程QAQ

    推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化。。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 3000;
    int t, p, w, ap[N], bp[N], as[N], bs[N], dp[N][N], q[N];
    
    int calc1(int i, int k){
        return dp[i - w - 1][k] + k * ap[i];
    }
    
    int calc2(int i, int k){
        return dp[i - w - 1][k] + k * bp[i];
    }
    
    int main(){
    
        t = read(), p = read(), w = read();
        for(int i = 1; i <= t; i ++){
            ap[i] = read(), bp[i] = read();
            as[i] = read(), bs[i] = read();
        }
        full(dp, 0xcf);
        for(int i = 1; i <= t; i ++){
            for(int j = 0; j <= as[i]; j ++) dp[i][j] = -1 * ap[i] * j;
            for(int j = 0; j <= p; j ++) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
            if(i <= w) continue;
            int l = 1, r = 0;
            for(int j = 0; j <= p; j ++){
                while(l <= r && j - q[l] > as[i]) l ++;
                while(l <= r && calc1(i, q[r]) <= calc1(i, j)) r --;
                q[++r] = j;
                if(l <= r) dp[i][j] = max(dp[i][j], calc1(i, q[l]) - j * ap[i]);
            }
            l = 1, r = 0;
            for(int j = p; j >= 0; j --){
                while(l <= r && q[l] > j + bs[i]) l ++;
                while(l <= r && calc2(i, q[r]) <= calc2(i, j)) r --;
                q[++r] = j;
                if(l <= r) dp[i][j] = max(dp[i][j], calc2(i, q[l]) - j * bp[i]);
            }
        }
        int ans = -INF;
        for(int i = 0; i <= p; i ++){
            ans = max(ans, dp[t][i]);
        }
        printf("%d
    ", ans);
        return 0;
    }
    
    
  • 相关阅读:
    【excel】=EXACT(A1,B1) 比较两个字符串是否相等
    【oracle】oracle11g安装失败 提示找不到文件,模板General_Purpose.dbc不存在
    【oracle】11g服务器安装详细步骤
    【oracle】ceil函数 返回值 (大于参数的最小整数)
    【oracle】 months_between(date1,date2)
    javaWeb遍历获取session中的值
    tomcat+mysql数据库连接池的操作
    java中值得类型转化
    javaWeb图片验证码代码
    JSP与Servlet之间传值
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10762827.html
Copyright © 2011-2022 走看看