【题意】给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7。
【算法】数论(莫比乌斯反演)
【题解】
$$ans=sum_{ileq n}sum_{jleq m}frac{i*j}{gcd(i,j)}$$
$$ans=sum_{dleq min(n,m)}1/dsum_{ileq n}sum_{jleq m}[gcd(i,j)=d]i*j$$
$$ans=sum_{dleq min(n,m)}dsum_{ileq n/d}sum_{jleq m/d}[gcd(i,j)=1]i*j$$
发现后面部分只和n/d,m/d有关,于是封装后分块取值优化。
★$$ans=sum_{dleq min(n,m)}d*F(n/d,m/d)$$
$$F(n,m)=sum_{ileq n}sum_{jleq m}[gcd(i,j)=1]i*j$$
运用e=i*μ反演易得
★$$F(n,m)=sum_{dleq min(n,m)}mu (d)*d^2*sum(n/d,m/d)$$
$$sum(n,m)=sum_{ileq n}sum_{jleq m}i*j=sum_{ileq n}isum_{jleq m}j$$
★$$sum(n,m)=frac{n(n+1)}{2}*frac{m(m+1)}{2}$$
(这步由一般分配律)
最后就是两次分块取值优化,√n*√n,复杂度O(n)。

#include<cstdio> #include<algorithm> using namespace std; const int maxn=10000010,MOD=20101009; int sum[maxn],n,m,miu[maxn],prime[maxn],tot; bool mark[maxn]; int M(int x){return x>=MOD?x-MOD:x;} int SUM(int x,int y){return 1ll*x*(x+1)/2%MOD*(1ll*y*(y+1)/2%MOD)%MOD;} int solve(int x,int y){ int z=min(x,y),ans=0,pos=1; for(int i=1;i<=z;i=pos+1){ pos=min(x/(x/i),y/(y/i)); ans=(ans+1ll*(sum[pos]-sum[i-1])*SUM(x/i,y/i)%MOD)%MOD; } return ans; } int main(){ scanf("%d%d",&n,&m); int z=min(n,m); miu[1]=sum[1]=1; for(int i=2;i<=z;i++){ if(!mark[i])miu[prime[++tot]=i]=-1; for(int j=1;j<=tot&&i*prime[j]<=z;j++){ mark[i*prime[j]]=1; if(i%prime[j]==0)break; miu[i*prime[j]]=-miu[i]; } sum[i]=(sum[i-1]+1ll*i*i*miu[i]%MOD)%MOD; } int pos=1,ans=0; for(int i=1;i<=z;i=pos+1){ pos=min(n/(n/i),m/(m/i)); ans=(ans+1ll*(pos+i)*(pos-i+1)/2%MOD*solve(n/i,m/i))%MOD; } printf("%d",(ans+MOD)%MOD); return 0; }