zoukankan      html  css  js  c++  java
  • J.U.C FutureTask之源码解析

          通过直接继承Thread, 实现Runnable接口来创建线程。但这两种方式都有一种缺陷:在执行完任务之后无法获得执行结果。

          如果需要获得执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来比较麻烦,而jdk中Callable和Future,通过他们可以在任务执行完毕之后得到任务执行结果。先看看他们之间的组织关系:

         Callable:

    public interface Callable<V> {
        /**
         * Computes a result, or throws an exception if unable to do so.
         *
         * @return computed result
         * @throws Exception if unable to compute a result
         */
        V call() throws Exception;
    }

           源码可知,它也是个一个接口,在他里面也只是申明一个方法,只不过这个方法为call(),call方法返回的就是该泛型传递进来的V类型,他怎么使用呢?就是结合之前的ExecuteService:

        <T> Future<T> submit(Callable<T> task);
    
        <T> Future<T> submit(Runnable task, T result);
    
        Future<?> submit(Runnable task);

          第一个submit方法里面的参数类型就是Callable。

          

         Future:

          Future就是对于具体的Runnable或者Callable任务的执行进度的查看,取消,查询是否完成,获取结果(正确完成时的结果,或异常)。必要时可以通过get方法获取执行的结果,该方法会阻塞直到任务返回结果,或通过指定阻塞时间的版本。

    public interface Future<V> {
    
     
        boolean cancel(boolean mayInterruptIfRunning);
    
        boolean isDone();
    
        V get() throws InterruptedException, ExecutionException;
    
        V get(long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException;
    }

        其中cancel()方法用来取消任务,如果取消任务成功则返回true, 如果取消任务失败则返回false。 参数mayInterruptIfRunning表示是否允许取消真在执行去没有执行完毕的任务,如果设置true, 则表示可以取消正在执行过程的任务。 当任务已经完成,或者已经被取消过了,或者因为别的原因不能取消, 则返回false。 当取消时,该任务还没有开始执行,则该任务不会执行,并且总是返回true。

        

        FutureTask:

     

    public class FutureTask<V> implements RunnableFuture<V>

         FutureTask类实现了RunnableFuture接口,看一下RunnableFuture接口的定义:

    public interface RunnableFuture<V> extends Runnable, Future<V>

         RunnableFuture接口接触了Runnable接口和Future接口, 而FutureTask实现了RunnableFuture接口,所以它既可作为Runnable被线程执行,也可以作为Future得到Callable的返回值。

         构造器定义:

     public FutureTask(Callable<V> callable) 
     public FutureTask(Runnable runnable, V result) {

         再来看看第二个构造器中的参数怎么变身Callable的:

    this.callable = Executors.callable(runnable, result);

         调用Executors.callable方法:

     public static <T> Callable<T> callable(Runnable task, T result) {
            if (task == null)
                throw new NullPointerException();
            return new RunnableAdapter<T>(task, result);
        }

        简单实现Callable:

    static final class RunnableAdapter<T> implements Callable<T> {
            final Runnable task;
            final T result;
            RunnableAdapter(Runnable task, T result) {
                this.task = task;
                this.result = result;
            }
            public T call() {
                task.run();
                return result;
            }
        }

    流程:

         下面结合完整具体流程走一下FutureTask过程,并解析源码,草图如下:

            实例代码如下:

     1 public class Test {
     2     public static void main(String[] args) {
     3         //第一种方式
     4         ExecutorService executor = Executors.newCachedThreadPool();
     5         Task task = new Task();
     6         FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
     7         executor.submit(futureTask);
     8         executor.shutdown();
    15          
    16         try {
    17             Thread.sleep(1000);
    18         } catch (InterruptedException e1) {
    19             e1.printStackTrace();
    20         }
    21          
    22         System.out.println("主线程在执行任务");
    23          
    24         try {
    25             System.out.println("task运行结果"+futureTask.get());
    26         } catch (InterruptedException e) {
    27             e.printStackTrace();
    28         } catch (ExecutionException e) {
    29             e.printStackTrace();
    30         }
    31          
    32         System.out.println("所有任务执行完毕");
    33     }
    34 }
    35 class Task implements Callable<Integer>{
    36     @Override
    37     public Integer call() throws Exception {
    38         System.out.println("子线程在进行计算");
    39         Thread.sleep(3000);
    40         int sum = 0;
    41         for(int i=0;i<100;i++)
    42             sum += i;
    43         return sum;
    44     }
    45 }

         分析过程之前,先准备前准备知识,首先看一下FutureTask内部状态,以及之间的转变:

        private volatile int state; // volatile 内存可见性
        private static final int NEW          = 0; //该状态为new FutureTask()时设定,同时也表示内部成员callable已经成功赋值,一直到worker thread完成FutureTask中run().
        private static final int COMPLETING   = 1; //该状态位worker thread完成task时设定的中间状态,处于该状态下,说明worker thread 真正准备设置result.
        private static final int NORMAL       = 2;  //当设置result结果完成后,FutureTask处于该状态,代表过程结果,该状态为最终状态final state,(正确完成的最终状态)
        private static final int EXCEPTIONAL  = 3;  // 同上,只不过task执行过程出现异常,此时结果设值为exception,也是final state
        private static final int CANCELLED    = 4;  //final state, 表明task被cancel(task还没有执行就被cancel的状态).
        private static final int INTERRUPTING = 5;  // 中间状态,task运行过程中被interrupt时,设置的中间状态;
        private static final int INTERRUPTED  = 6;   // final state, 中断完毕的最终状态,几种情况,下面具体分析。

         下面是状态之间的转变,贯穿主线:

       * Possible state transitions:
         1* NEW -> COMPLETING -> NORMAL   
         2* NEW -> COMPLETING -> EXCEPTIONAL
         3* NEW -> CANCELLED
         4* NEW -> INTERRUPTING -> INTERRUPTED
         */

          其他重要的变量:

     /** The underlying callable; nulled out after running */
        private Callable<V> callable;   // 具体run运行时会调用其方法call(),并获得结果,结果时置为null.
        /** The result to return or exception to throw from get() */
        private Object outcome; // non-volatile, protected by state reads/writes   没必要为votaile,因为其是伴随state 进行读写,而state是FutureTask的主导因素。
        /** The thread running the callable; CASed during run() */
        private volatile Thread runner;   //具体的worker thread.
        /** Treiber stack of waiting threads */  
        private volatile WaitNode waiters;     //Treiber stack 并发stack数据结构,用于存放阻塞在该futuretask#get方法的线程。

         OK,构造new FutureTask开始:

      public FutureTask(Callable<V> callable) {
            if (callable == null)
                throw new NullPointerException();
            this.callable = callable; //底层callable赋值
            this.state = NEW;       // 初始状态NEW,同时也标志了callable的赋值,可见性
        }

           ThreadPoolExecutor.submit(Runnable),ThreadPoolExecutor里面具体细节请见这里,这里就假设它直接new a thread来处理该任务了,因为FutureTask为Runnable的子类,所以worker thread调用该类的run()方法:

            public void run() {
    if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) //状态检测,和当前worker Thread的cas原子赋值,有一个不成立,就直接返回。什么情况下还没run()呢?就不是NEW状态了呢? return; //caller调用cancel了,此时状态为Interrupting,也说明了上面的cancel方法说明,task没运行时,就interrupt,task得不到运行。总是返回 try { //true。
    //再来看看这里worker thread赋值为什么要用cas操作,有竞争racing? 竞争哪里来?难道threadPoolExecutor线程池多个线程可能抢同一个 Callable
    <V> c = callable; //任务?不可能 1:线程数 < coreThreadPool 时, 直接new thread, 2 : 大于 coreThreadpool时,放在blockingqueue里,取的话只能一 if (c != null && state == NEW) { //线程。能想到就是caller那边了,即多callers(多线程)提交同一FutureTask. V result; //多线程同时提交同一FutureTask,确保该FutureTask的run()只被调用一次, boolean ran; try { result = c.call(); //此处的if,1:当state == NEW(task没完成,中断) 并且 worker Thread为null时,才会得到运行 ran = true; // 2: task已经完成了 或者 该任务已经有worker thread来执行时,直接返回不会运行。 } catch (Throwable ex) { //调用callable的call方法 result = null; //执行task时有异常 ran = false; //附异常 setException(ex); } if (ran) //正常完成,则赋值 set(result); } } finally { //注意!!什么这里吧runner置为null,此时run()方法还没运行完呢啊!现在置为null,不怕并发调用run()吗?注意此时state已经变化了(Comple runner = null; //teing或者interrupting了,run()一开始state != NEW 直接return,不会运行。可以说通过state和 worker thread来一起控制并发调用run int s = state; //必须再读一次,防止worker thread == null后,遗漏的interrup信号,底下具体分析中断的情况。 if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); //如果caller中断信号有的话,则处理该interrupt. } //另外该任务是一致性任务,即state只要不为NEW,该任务就不会在运行,运行结束或cancel后,就不能在运行了,因为state状态在那不变哦! }

          请看下例子,三个提交线程(提交同一个FutureTask):

    public class Test {
        public static void main(String[] args) {
            ExecutorService executor = Executors.newCachedThreadPool();
            Task task = new Task();
            CountDownLatch latch = new CountDownLatch(1);
            FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
            for (int i = 0 ; i < 3; i++) {
                new Thread(new Submit(executor,  futureTask, latch)).start();
            }
            try {
                Thread.sleep(3000);
                latch.countDown();
                Thread.sleep(20000);
            } catch (InterruptedException e1) {
                e1.printStackTrace();
            } 
            System.out.println("所有任务执行完毕");
            executor.shutdown();
        }
        
    }
    
    class Submit implements Runnable {
        private CountDownLatch latch ;
        private ExecutorService es ;
        private FutureTask<Integer> task; 
        public Submit(ExecutorService es, FutureTask<Integer> task, CountDownLatch latch) {
             this.latch = latch;
             this.es = es;    
             this.task = task;
        }
        public void run() {
            
            
            try {
                latch.await();
                Future<?> future = (Future<?>) es.submit(task);
                System.out.println("Thread name : " + Thread.currentThread().getName() + "go!");
                future.get(3000, TimeUnit.MILLISECONDS);
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e1) {
                e1.printStackTrace();
            } catch (TimeoutException e2) {
                System.err.println("Thread name : " + Thread.currentThread().getName()  + " " + e2);
            }
        }    
    }
    
    class Task implements Callable<Integer>{
       
        public Integer call() throws Exception {
            System.out.println("thread name : " + Thread.currentThread().getName() + "do the work!");
            Thread.sleep(6000);
            int sum = 0;
            for(int i=0;i<100;i++)
                sum += i;
            return sum;
        }
    }

        显示如下:

    Thread name : Thread-1go!
    Thread name : Thread-0go!
    Thread name : Thread-2go!
    thread name : pool-1-thread-1do the work!
    Thread name : Thread-1 java.util.concurrent.TimeoutException
    所有任务执行完毕

          结果很显然,同一个任务多次提交(并发提交),FutureTask保证只是启一个线程来运行。

          想运行多次(只要不cancel,和throw exception,因为他set(result),正常运行结束,state还是new),用这个:

    protected boolean runAndReset() {
            if (state != NEW ||
                !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                             null, Thread.currentThread()))
                return false;
            boolean ran = false;
            int s = state;
            try {
                Callable<V> c = callable;
                if (c != null && s == NEW) {
                    try {
                        c.call(); // don't set result
                        ran = true;
                    } catch (Throwable ex) {
                        setException(ex);
                    }
                }
            } finally {
                
                runner = null;
                s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
            return ran && s == NEW;   
        }

      再来看看setException()和set(result):

     protected void set(V v) {
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { // cas原子操作,失败直接返回,成功的前提之前的状态必须为NEW.
                outcome = v;                                                    //可能和什么冲突呢? caller已经cancel该task,状态位Interrupting或者Interrpted(这次Interrupted代表interrupt完成,这set()
                UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state  // 不是在worker thread中调用的嘛,怎么intterupt都完成了,怎么worker thread还在运行呢?worker thread运行的代码中没有响
                finishCompletion();                                              //应interrupt的代码。所以客户端cancel操作,对运行中的worker thread,并不一定让它停下来,不过此时即使运行完毕,也不能赋值。
            }
        }                                                                        //new -> Completing-> NORMAL 或者NEW ->Interrupting->Intterrpted.
        protected void setException(Throwable t) {
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = t;    //同上,不过附异常。
                UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
                finishCompletion();
            }                                                                   //new ->completing ->exception 或者 同上
        }

         finishCompletion()等会细聊,主要是没说到get()阻塞呢!看看caller端线程调用cancel()和workerThread的handlePossibleCancellationInterrupt(int s)协调:

       public boolean cancel(boolean mayInterruptIfRunning) {
            if (state != NEW) 
                return false; //1:已经cancel(cancelled,Interruping, Interrupted)过了 2:正常完成 Completing(Completed) 3:异常完成completing(exception) 直接返回false; 
            if (mayInterruptIfRunning) { // flag : worker thread 已经启动运行了,是否可以中断
                if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING)) //再次检查state状态,完成的话(上面的三种),直接返回false;
                    return false;
                Thread t = runner; 
                if (t != null)       // t == null对应Future task还没启动, 跳过thread.interrupt(),直接由interrpting -> interrupted,成功的话
                    t.interrupt();   //调用worker thread的 interrupt() //mayInterrptIfRunning 为true ,interrupt 状态转变 new -> interrupting -> interrupted.
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
            }
            else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED)) //mayInterruptIfRunning 为false,interrupt成功的 状态转变 new -> Cancelled
                return false;
            finishCompletion();
            return true;
        }

           由上面可知,客户端cancel()中不少cas操作,主要来自两方面的racing, 1:线程池worker Thread的完成(异常,正常)状态设置; 2:同一futuretask,不同客户端线程callers的cancel操作。

     private void handlePossibleCancellationInterrupt(int s) {
            // It is possible for our interrupter to stall before getting a
            // chance to interrupt us.  Let's spin-wait patiently.
            if (s == INTERRUPTING)
                while (state == INTERRUPTING)
                    Thread.yield(); // wait out pending interrupt
    
            // assert state == INTERRUPTED;
    
            // We want to clear any interrupt we may have received from
            // cancel(true).  However, it is permissible to use interrupts
            // as an independent mechanism for a task to communicate with
            // its caller, and there is no way to clear only the
            // cancellation interrupt.
            //
            // Thread.interrupted();
        }

          当state处于Interrupting, 即caller即将调用worker thread.interrupt(), 所以worker thread自旋会,等会interrupt方法的调用,保留interrupt标志。

          再来看看get()和带参数的get(timeout):

     public V get() throws InterruptedException, ExecutionException {
            int s = state;
            if (s <= COMPLETING)  //结果未设定的情况下
                s = awaitDone(false, 0L); //无条件等待
            return report(s);
        }
    
        /**
         * @throws CancellationException {@inheritDoc}
         */
        public V get(long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException {
            if (unit == null)
                throw new NullPointerException();
            int s = state;
            if (s <= COMPLETING &&
                (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) //等到timeout时间内,没完成,throws TimeoutException
                throw new TimeoutException();
            return report(s);
        }

            awaitDone():

       private int awaitDone(boolean timed, long nanos)
            throws InterruptedException {
            final long deadline = timed ? System.nanoTime() + nanos : 0L; //计算出等待时间。
            WaitNode q = null;
            boolean queued = false;  //是否加入阻塞队列的标志
            for (;;) {
                if (Thread.interrupted()) { //阻塞该caller线程之前,caller线程被中断,直接throw 异常
                    removeWaiter(q);    //在阻塞队列中移除该线程的封装node.此处无意义
                    throw new InterruptedException();
                }
    
                int s = state; //读取state,阻塞前 recheck一下 是否完成?
                if (s > COMPLETING) { //完成了,直接返回,不要阻塞了
                    if (q != null)
                        q.thread = null;
                    return s;
                }
                else if (s == COMPLETING) // cannot time out yet
                    Thread.yield(); //等会,快完成了。
                else if (q == null)
                    q = new WaitNode(); //当前阻塞线程链表的简单封装
                else if (!queued)
                    queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                         q.next = waiters, q); //设为当前FutureTask阻塞链表(stack结构)的栈顶。
                else if (timed) {
                    nanos = deadline - System.nanoTime(); //计算当前要阻塞的等待时间
                    if (nanos <= 0L) {
                        removeWaiter(q); //小于0 直接返回,当前REMOVEWaiter无意义,并没有加入stack中。
                        return state;
                    }
                    LockSupport.parkNanos(this, nanos);本地native方法,阻塞当前线程。
                }
                else
                    LockSupport.park(this); //无时间条件阻塞
            }
        }

          无时间限制阻塞,有时间阻塞(阻塞时间大于task完成时间)会等到任务完成而给通知,唤醒该线程,即finishCompletion();而有时间阻塞(阻塞时间在task完成之间就已经结束的)会通过for()退出(退出前,删除等待队列中的节点)。 

          WaiterNode定义:

      static final class WaitNode {
            volatile Thread thread;
            volatile WaitNode next;
            WaitNode() { thread = Thread.currentThread(); } //当前阻塞线程的引用
        }

           结合awaitDone()中的新阻塞节点加入顺序,其定位stack结构(Treiber stack);

           removeWaiter():

     private void removeWaiter(WaitNode node) {
            if (node != null) {
                node.thread = null;
                retry:
                for (;;) {          // restart on removeWaiter race
                    for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                        s = q.next;
                        if (q.thread != null)
                            pred = q;
                        else if (pred != null) {
                            pred.next = s;
                            if (pred.thread == null) // 检测竞争
                                continue retry; //发生重试
                        }
                        else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                              q, s))
                            continue retry;
                    }
                    break;
                }
            }
        }

          finishCompletion():

     private void finishCompletion() {
            // assert state > COMPLETING;
            for (WaitNode q; (q = waiters) != null;) { 得到栈顶阻塞节点的引用
                if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                    for (;;) {
                        Thread t = q.thread; //取得阻塞的线程引用,
                        if (t != null) {
                            q.thread = null;
                            LockSupport.unpark(t);//解阻塞
                        }
                        WaitNode next = q.next; //遍历解阻塞线程
                        if (next == null)
                            break;
                        q.next = null; // unlink to help gc
                        q = next;
                    }
                    break;
                }
            }
    
            done();
    
            callable = null;        // to reduce footprint
        }

          其实,前面的分析可知,多个caller线程并发提交同一个FutureTask, 并且所谓调用get()阻塞的话(阻塞在该FutureTask上),实际上也就一个caller线程阻塞,其他线程在调用该FutureTask的run()开始条件检查时,就直接return了,实际情况:三个并发线程提交同一个future task,对应生成三份FutureTask(不同于之前),三份FutureTask中对应三分Callable,而这三份Callable含有相同的FutureTask(所谓的相同任务) ,向ThreadPoolExecutor.submit(Runnable)实际上提交了三份Runnable(即生成的三分FutureTask), FutureTask实现了Runnable接口, 然后ThreadPoolExecutor生成三个线程来执行这所谓的三个任务,这三个任务run()中都是调用对应内部的callable的call(), 而callable的call方法调用的是他们共同引用的FutureTask(同一个对像)的run()方法,而run方法, 我们上面解析过了,通过cas和状态检测,只运行一个worker thread 调用run()(见上),另外两个线程直接从共同底层FutureTask的run方法开始直接返回。

          晕了?从头再来看看提交的过程:

         1:submit(FutureTask(Runnable)):AbstractExecutorService

      public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
            return new FutureTask<T>(runnable, value);
        }

          2:生成三个FutureTask(其中runnable就是同一个底层FutureTask任务):

        public FutureTask(Runnable runnable, V result) {
            this.callable = Executors.callable(runnable, result);
            this.state = NEW;       // ensure visibility of callable
        }

          3:调用Executors.callable():

    public static <T> Callable<T> callable(Runnable task, T result) {
            if (task == null)
                throw new NullPointerException();
            return new RunnableAdapter<T>(task, result);
        }
     static final class RunnableAdapter<T> implements Callable<T> {
            final Runnable task;
            final T result;
            RunnableAdapter(Runnable task, T result) {
                this.task = task;
                this.result = result;
            }
            public T call() { //直接调用底层同一个FutureTask的run();
                task.run();
                return result;
            }
        }

          即三次提交,生成三份FutureTask,每份FutureTask调用Executors.callable()为自己底层的callable赋值,而Executors.callable方法生成简单的Callable实现,其中call(),调用底层共同FutureTask的run(), 也就受共同futureTask内部状态(state, runThread)限制。所以,阻塞在底层共同FutureTask阻塞队列中的只有一个线程,看下例:

    public class Test {
        public static void main(String[] args) {
            ExecutorService executor = Executors.newCachedThreadPool();
            Task task = new Task();
            int waitTime = 4000;
            CountDownLatch latch = new CountDownLatch(1);
            FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
            for (int i = 0 ; i < 3; i++) {
                new Thread(new Submit(executor,  futureTask, latch, waitTime)).start();
            }
            try {
                Thread.sleep(3000);
                latch.countDown();
                Thread.sleep(8000);
            } catch (InterruptedException e1) {
                e1.printStackTrace();
            } 
            System.out.println("所有任务执行完毕");
            executor.shutdown();
        }
        
    }
    
    class Submit implements Runnable {
        private CountDownLatch latch ;
        private ExecutorService es ;
        private FutureTask<Integer> task; 
        private int waitTime ;
        public Submit(ExecutorService es, FutureTask<Integer> task, CountDownLatch latch, int waitTime) {
             this.latch = latch;
             this.es = es;    
             this.task = task;
             this.waitTime = waitTime;
        }
        public void run() {
            try {
                latch.await();
                Future<?> future =  es.submit(task);
                System.out.println("Thread name : " + Thread.currentThread().getName() + " go!");
                waitTime = new Random().nextInt(waitTime);
                System.out.println("Thread name : " + Thread.currentThread().getName() + " , The wait time : =  " + waitTime );
                future.get(waitTime, TimeUnit.MILLISECONDS);
                System.out.println("Thread name : " + Thread.currentThread().getName() + " run over!");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e1) {
                e1.printStackTrace();
            } catch (TimeoutException e2) {
                System.err.println("Thread name : " + Thread.currentThread().getName()  + " " + e2);
            }
        }    
    }
    
    class Task implements Callable<Integer>{
       
        public Integer call() throws Exception {
            System.out.println("thread name : " + Thread.currentThread().getName() + " do the work!");
            Thread.sleep(4000);
            int sum = 0;
            for(int i=0;i<20;i++)
                sum += i;
            return sum;
        }
    }
    
    class Task1 implements Runnable{
        int sum = 0;
        @Override
        public void run() {
            System.out.println("Thread Name : " + Thread.currentThread().getName() + "do the work!");
            try {
                Thread.sleep(6000);
                
                for(int i=0;i<100;i++)
                    sum += i;
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            } 
        }
    }

       显示结果:

    Thread name : Thread-2 go!
    Thread name : Thread-0 go!
    Thread name : Thread-0 , The wait time : =  2738
    thread name : pool-1-thread-1 do the work!
    Thread name : Thread-1 go!
    Thread name : Thread-2 , The wait time : =  284
    Thread name : Thread-1 , The wait time : =  678
    Thread name : Thread-2 run over!
    Thread name : Thread-0 run over!
    Thread name : Thread-1 java.util.concurrent.TimeoutException
    所有任务执行完毕

           三个线程都是阻塞一段时间,但是只有一个超时,另外两个运行完毕,(他两实际工作那部分没运行,处理各自FutureTask那部分代码,所以只能看到线程池只有一个线程处理底层FutureTask);

    但,如果直接并发提交Callable,或者Runnable,线程池会启动三个线程来分别处理这三个不同任务,朋友可以自行试验demo下。而FutureTask是自己的自身的限制。

          后话,一般调用ThreadPoolExecutor.submit()提交的是Callable<T>和Runnable, 返回的Future<T>, Future<?>(返回Null,或者不要求返回值),提交FutureTask用不着,所以实际中不会遇见这种情况。

          另外,本文源码基于jdk1.7,与网上1.7之前源码不同(1.6通过AQS实现)。

  • 相关阅读:
    android 圆角图片的实现
    navigationView 的使用和布局文件的绑定
    android listview 的监听事件
    android第三方框架 xlistview 的使用
    android Baseadapter 和 ViewHolder的使用
    android 调用电话功能
    android 颜色对照
    Android_menu_SubMenu
    Android_menu_optionMenu
    Android_Menu_contextMenu
  • 原文地址:https://www.cnblogs.com/onlysun/p/4609344.html
Copyright © 2011-2022 走看看