zoukankan      html  css  js  c++  java
  • Render OpenCascade Geometry Surfaces in OpenSceneGraph

    在OpenSceneGraph中绘制OpenCascade的曲面

    Render OpenCascade Geometry Surfaces in OpenSceneGraph

    eryar@163.com

    摘要Abstract:本文对OpenCascade中的几何曲面数据进行简要说明,并结合OpenSceneGraph将这些曲面显示。 

    关键字Key Words:OpenCascade、OpenSceneGraph、Geometry Surface、NURBS 

    一、引言 Introduction

    《BRep Format Description White Paper》中对OpenCascade的几何数据结构进行了详细说明。BRep文件中用到的曲面总共有11种: 

    1.Plane 平面; 

    2.Cylinder 圆柱面; 

    3.Cone 圆锥面; 

    4.Sphere 球面; 

    5.Torus 圆环面; 

    6.Linear Extrusion 线性拉伸面; 

    7.Revolution Surface 旋转曲面; 

    8.Bezier Surface 贝塞尔面; 

    9.B-Spline Surface B样条曲面; 

    10.Rectangle Trim Surface 矩形裁剪曲面; 

    11.Offset Surface 偏移曲面; 

    曲面的几何数据类都有一个共同的基类Geom_Surface,类图如下所示: 

    wps_clip_image-5993

    Figure 1.1 Geometry Surface class diagram 

    抽象基类Geom_Surface有几个纯虚函数Bounds()、Value()等,可用来计算曲面上的点。类图如下所示: 

    wps_clip_image-12898

    Figure 1.2 Geom_Surface class diagram 

    与另一几何内核sgCore中的几何的概念一致,几何(geometry)是用参数方程对曲线曲面精确表示的。 

    每种曲面都对纯虚函数进行实现,使计算曲面上点的方式统一。 

    曲线C(u)是单参数的矢值函数,它是由直线段到三维欧几里得空间的映射。曲面是关于两个参数u和v的矢值函数,它表示由uv平面上的二维区域R到三维欧几里得空间的映射。把曲面表示成双参数的形式为: 

    wps_clip_image-16905

    它的参数方程为: 

    wps_clip_image-19345

    u,v参数形成了一个参数平面,参数的变化区间在参数平面上构成一个矩形区域。正常情况下,参数域内的点(u,v)与曲面上的点r(u,v)是一一对应的映射关系。 

    给定一个具体的曲面方程,称之为给定了一个曲面的参数化。它既决定了所表示的曲面的形状,也决定了该曲面上的点与其参数域内的点的一种对应关系。同样地,曲面的参数化不是唯一的。 

    曲面双参数u,v的变化范围往往取为单位正方形,即u∈[0,1],v∈[0,1]。这样讨论曲面方程时,即简单、方便,又不失一般性。 

    二、程序示例 Code Example

    使用函数Value(u, v)根据参数计算出曲面上的点,将点分u,v方向连成线,可以绘制出曲面的线框模型。程序如下所示: 

    /*
    *    Copyright (c) 2013 eryar All Rights Reserved.
    *
    *        File    : Main.cpp
    *        Author  : eryar@163.com
    *        Date    : 2013-08-11 10:36
    *        Version : V1.0
    *
    *    Description : Draw OpenCascade Geometry Surfaces in OpenSceneGraph.
    *
    */
    
    // OpenSceneGraph
    #include <osgDB/ReadFile>
    #include <osgViewer/Viewer>
    #include <osgGA/StateSetManipulator>
    #include <osgViewer/ViewerEventHandlers>
    
    #pragma comment(lib, "osgd.lib")
    #pragma comment(lib, "osgDBd.lib")
    #pragma comment(lib, "osgGAd.lib")
    #pragma comment(lib, "osgViewerd.lib")
    
    // OpenCascade
    #define WNT
    #include <TColgp_Array2OfPnt.hxx>
    #include <TColStd_HArray1OfInteger.hxx>
    #include <TColGeom_Array2OfBezierSurface.hxx>
    #include <GeomConvert_CompBezierSurfacesToBSplineSurface.hxx>
    
    #include <Geom_Surface.hxx>
    #include <Geom_BezierSurface.hxx>
    #include <Geom_BSplineSurface.hxx>
    #include <Geom_ConicalSurface.hxx>
    #include <Geom_CylindricalSurface.hxx>
    #include <Geom_Plane.hxx>
    #include <Geom_ToroidalSurface.hxx>
    #include <Geom_SphericalSurface.hxx>
    
    #pragma comment(lib, "TKernel.lib")
    #pragma comment(lib, "TKMath.lib")
    #pragma comment(lib, "TKG3d.lib")
    #pragma comment(lib, "TKGeomBase.lib")
    
    // Approximation Delta.
    const double APPROXIMATION_DELTA = 0.1;
    
    /**
    * @breif Build geometry surface.
    */
    osg::Node* buildSurface(const Geom_Surface& surface)
    {
        osg::ref_ptr<osg::Geode> geode = new osg::Geode();
    
        gp_Pnt point;
        Standard_Real uFirst = 0.0;
        Standard_Real vFirst = 0.0;
        Standard_Real uLast = 0.0;
        Standard_Real vLast = 0.0;
    
        surface.Bounds(uFirst, uLast, vFirst, vLast);
    
        Precision::IsNegativeInfinite(uFirst) ? uFirst = -1.0 : uFirst;
        Precision::IsInfinite(uLast) ? uLast = 1.0 : uLast;
    
        Precision::IsNegativeInfinite(vFirst) ? vFirst = -1.0 : vFirst;
        Precision::IsInfinite(vLast) ? vLast = 1.0 : vLast;
    
        // Approximation in v direction.
        for (Standard_Real u = uFirst; u <= uLast; u += APPROXIMATION_DELTA)
        {
            osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
            osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array();
    
            for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
            {
                point = surface.Value(u, v);
    
                pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
            }
    
            // Set the colors.
            osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
            colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
            linesGeom->setColorArray(colors.get());
            linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL);
    
            // Set the normal in the same way of color.
            osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
            normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
            linesGeom->setNormalArray(normals.get());
            linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL);
    
            // Set vertex array.
            linesGeom->setVertexArray(pointsVec);
            linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, 0, pointsVec->size()));
            
            geode->addDrawable(linesGeom.get());
        }
    
        // Approximation in u direction.
        for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
        {
            osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
            osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array();
    
            for (Standard_Real u = vFirst; u <= uLast; u += APPROXIMATION_DELTA)
            {
                point = surface.Value(u, v);
    
                pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
            }
    
            // Set the colors.
            osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
            colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
            linesGeom->setColorArray(colors.get());
            linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL);
    
            // Set the normal in the same way of color.
            osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
            normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
            linesGeom->setNormalArray(normals.get());
            linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL);
    
            // Set vertex array.
            linesGeom->setVertexArray(pointsVec);
            linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, 0, pointsVec->size()));
            
            geode->addDrawable(linesGeom.get());
        }
    
        return geode.release();
    }
    
    /**
    * @breif Test geometry surfaces of OpenCascade.
    */
    osg::Node* buildScene(void)
    {
        osg::ref_ptr<osg::Group> root = new osg::Group();
    
        // Test Plane.
        Geom_Plane plane(gp::XOY());
        root->addChild(buildSurface(plane));
    
        // Test Bezier Surface and B-Spline Surface.
        TColgp_Array2OfPnt array1(1,3,1,3);
        TColgp_Array2OfPnt array2(1,3,1,3);
        TColgp_Array2OfPnt array3(1,3,1,3);
        TColgp_Array2OfPnt array4(1,3,1,3);
    
        array1.SetValue(1,1,gp_Pnt(1,1,1));
        array1.SetValue(1,2,gp_Pnt(2,1,2));
        array1.SetValue(1,3,gp_Pnt(3,1,1));
        array1.SetValue(2,1,gp_Pnt(1,2,1));
        array1.SetValue(2,2,gp_Pnt(2,2,2));
        array1.SetValue(2,3,gp_Pnt(3,2,0));
        array1.SetValue(3,1,gp_Pnt(1,3,2));
        array1.SetValue(3,2,gp_Pnt(2,3,1));
        array1.SetValue(3,3,gp_Pnt(3,3,0));
    
        array2.SetValue(1,1,gp_Pnt(3,1,1));
        array2.SetValue(1,2,gp_Pnt(4,1,1));
        array2.SetValue(1,3,gp_Pnt(5,1,2));
        array2.SetValue(2,1,gp_Pnt(3,2,0));
        array2.SetValue(2,2,gp_Pnt(4,2,1));
        array2.SetValue(2,3,gp_Pnt(5,2,2));
        array2.SetValue(3,1,gp_Pnt(3,3,0));
        array2.SetValue(3,2,gp_Pnt(4,3,0));
        array2.SetValue(3,3,gp_Pnt(5,3,1));
    
        array3.SetValue(1,1,gp_Pnt(1,3,2));
        array3.SetValue(1,2,gp_Pnt(2,3,1));
        array3.SetValue(1,3,gp_Pnt(3,3,0));
        array3.SetValue(2,1,gp_Pnt(1,4,1));
        array3.SetValue(2,2,gp_Pnt(2,4,0));
        array3.SetValue(2,3,gp_Pnt(3,4,1));
        array3.SetValue(3,1,gp_Pnt(1,5,1));
        array3.SetValue(3,2,gp_Pnt(2,5,1));
        array3.SetValue(3,3,gp_Pnt(3,5,2));
    
        array4.SetValue(1,1,gp_Pnt(3,3,0));
        array4.SetValue(1,2,gp_Pnt(4,3,0));
        array4.SetValue(1,3,gp_Pnt(5,3,1));
        array4.SetValue(2,1,gp_Pnt(3,4,1));
        array4.SetValue(2,2,gp_Pnt(4,4,1));
        array4.SetValue(2,3,gp_Pnt(5,4,1));
        array4.SetValue(3,1,gp_Pnt(3,5,2));
        array4.SetValue(3,2,gp_Pnt(4,5,2));
        array4.SetValue(3,3,gp_Pnt(5,5,1));
    
        Geom_BezierSurface BZ1(array1);
        Geom_BezierSurface BZ2(array2);
        Geom_BezierSurface BZ3(array3);
        Geom_BezierSurface BZ4(array4);
        root->addChild(buildSurface(BZ1));
        root->addChild(buildSurface(BZ2));
        root->addChild(buildSurface(BZ3));
        root->addChild(buildSurface(BZ4));
    
        Handle_Geom_BezierSurface BS1 = new Geom_BezierSurface(array1);
        Handle_Geom_BezierSurface BS2 = new Geom_BezierSurface(array2);
        Handle_Geom_BezierSurface BS3 = new Geom_BezierSurface(array3);
        Handle_Geom_BezierSurface BS4 = new Geom_BezierSurface(array4);
        TColGeom_Array2OfBezierSurface bezierarray(1,2,1,2);
        bezierarray.SetValue(1,1,BS1);
        bezierarray.SetValue(1,2,BS2);
        bezierarray.SetValue(2,1,BS3);
        bezierarray.SetValue(2,2,BS4);
    
        GeomConvert_CompBezierSurfacesToBSplineSurface BB (bezierarray);
    
        if (BB.IsDone())
        {
            Geom_BSplineSurface BSPLSURF(
                BB.Poles()->Array2(),
                BB.UKnots()->Array1(),
                BB.VKnots()->Array1(),
                BB.UMultiplicities()->Array1(),
                BB.VMultiplicities()->Array1(),
                BB.UDegree(),
                BB.VDegree() );
    
            BSPLSURF.Translate(gp_Vec(0,0,2));
    
            root->addChild(buildSurface(BSPLSURF));
        }
    
        // Test Spherical Surface.
        Geom_SphericalSurface sphericalSurface(gp::XOY(), 1.0);
        sphericalSurface.Translate(gp_Vec(2.5, 0.0, 0.0));
        root->addChild(buildSurface(sphericalSurface));
    
        // Test Conical Surface.
        Geom_ConicalSurface conicalSurface(gp::XOY(), M_PI/8, 1.0);
        conicalSurface.Translate(gp_Vec(5.0, 0.0, 0.0));
        root->addChild(buildSurface(conicalSurface));
    
        // Test Cylindrical Surface.
        Geom_CylindricalSurface cylindricalSurface(gp::XOY(), 1.0);
        cylindricalSurface.Translate(gp_Vec(8.0, 0.0, 0.0));
        root->addChild(buildSurface(cylindricalSurface));
    
        // Test Toroidal Surface.
        Geom_ToroidalSurface toroidalSurface(gp::XOY(), 1.0, 0.2);
        toroidalSurface.Translate(gp_Vec(11.0, 0.0, 0.0));
        root->addChild(buildSurface(toroidalSurface));
    
        return root.release();
    }
    
    int main(int argc, char* argv[])
    {
        osgViewer::Viewer myViewer;
        
        myViewer.setSceneData(buildScene());
    
        myViewer.addEventHandler(new osgGA::StateSetManipulator(myViewer.getCamera()->getOrCreateStateSet()));
        myViewer.addEventHandler(new osgViewer::StatsHandler);
        myViewer.addEventHandler(new osgViewer::WindowSizeHandler);
    
        return myViewer.run();
    }

    程序效果如下图所示: 

    wps_clip_image-14066

    Figure 2.1 OpenCascade Geometry Surfaces in OpenSceneGraph 

    三、结论 Conclusion 

    根据OpenCascade中的几何曲面的函数Value(u, v)可以计算出曲面上的点。分u方向和v方向分别绘制曲面上的点,并将之连接成线,即可以表示出曲面的线框模型。因为这样的模型没有面的信息,所以不能有光照效果、材质效果等。要有光照、材质的信息,必须将曲面进行三角剖分。相关的剖分算法有Delaunay三角剖分等。 

  • 相关阅读:
    完成端口CreateIoCompletionPort编写高性能的网络模型程序
    offsetof的使用
    __attribute__
    nn_slow和nn_fast
    完成端口(Completion Port)详解(转)
    等待
    win8.1磁盘使用率100解决方法
    ubuntu 14.04 修改PS1提示符
    ubuntu14.04 开启root登陆
    Linux下彻底卸载LibreOffice方法
  • 原文地址:https://www.cnblogs.com/opencascade/p/3475110.html
Copyright © 2011-2022 走看看