zoukankan      html  css  js  c++  java
  • 机器学习作业(一)线性回归——Python(numpy)实现

    题目太长啦!文档下载【传送门

    第1题

    简述:设计一个5*5的单位矩阵。

    1 import numpy as np
    2 A = np.eye(5)
    3 print(A)

    运行结果:

    第2题

    简述:实现单变量线性回归。

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 from mpl_toolkits.mplot3d import Axes3D
     4 
     5 #-----------------计算代价值函数-----------------------
     6 def computeCost(X, y, theta):
     7     m = np.size(X[:,0])
     8     J = 1/(2*m)*np.sum((np.dot(X,theta)-y)**2)
     9     return J
    10 
    11 
    12 #----------------根据人口预测利润----------------------
    13 #读取数据集中数据,第一列是人口数据,第二列是利润数据
    14 data = np.loadtxt('ex1data1.txt',delimiter=",",dtype="float")
    15 m = np.size(data[:,0])
    16 # print(data)
    17 
    18 #------------------绘制样本点--------------------------
    19 X = data[:,0:1]
    20 y = data[:,1:2]
    21 plt.plot(X,y,"rx")
    22 plt.xlabel('Population of City in 10,000s')
    23 plt.ylabel('Profit in $10,000s')
    24 # plt.show()
    25 
    26 #-----------------梯度下降计算局部最优解----------------
    27 #添加第一列1
    28 one = np.ones(m)
    29 X = np.insert(X,0,values=one,axis=1)
    30 # print(X)
    31 
    32 #设置α、迭代次数、θ
    33 theta = np.zeros((2,1))
    34 iterations = 1500
    35 alpha = 0.01
    36 
    37 #梯度下降,并显示线性回归
    38 J_history = np.zeros((iterations,1))
    39 for iter in range(0,iterations):
    40     theta = theta - alpha/m*np.dot(X.T,(np.dot(X,theta)-y))
    41     J_history[iter] = computeCost(X,y,theta)
    42 plt.plot(data[:,0],np.dot(X,theta),'-')
    43 plt.show()
    44 # print(theta)
    45 # print(J_history)
    46 
    47 #--------------------显示三维图------------------------
    48 theta0 = np.linspace(-10,10,100)
    49 theta1 = np.linspace(-1,4,100)
    50 J_vals = np.zeros((np.size(theta0),np.size(theta1)))
    51 for i in range(0,np.size(theta0)):
    52     for j in range(0,np.size(theta1)):
    53         t = np.asarray([theta0[i],theta1[j]]).reshape(2,1)
    54         J_vals[i,j] = computeCost(X,y,t)
    55 # print(J_vals)
    56 J_vals = J_vals.T    #需要转置一下,否则轴会反
    57 fig1 = plt.figure()
    58 ax = Axes3D(fig1)
    59 ax.plot_surface(theta0,theta1,J_vals,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))
    60 ax.set_xlabel('theta0')
    61 ax.set_ylabel('theta1')
    62 ax.set_zlabel('J')
    63 plt.show()
    64 
    65 #--------------------显示轮廓图-----------------------
    66 lines = np.logspace(-2,3,20)
    67 plt.contour(theta0,theta1,J_vals,levels = lines)
    68 plt.xlabel('theta0')
    69 plt.ylabel('theta1')
    70 plt.plot(theta[0],theta[1],'rx')
    71 plt.show()

    运行结果:

     

    第3题

    简述:实现多元线性回归。

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 
     4 #-----------------计算代价值函数-----------------------
     5 def computeCost(X, y, theta):
     6     m = np.size(X[:,0])
     7     J = 1/(2*m)*np.sum((np.dot(X,theta)-y)**2)
     8     return J
     9 
    10 #-------------------根据面积和卧室数量预测房价----------
    11 #读取数据集中数据,第一列是面积数据,第二列是卧室数量,第三列是房价
    12 data = np.loadtxt('ex1data2.txt',delimiter=",",dtype="float")
    13 m = np.size(data[:,0])
    14 # print(data)
    15 X = data[:,0:2]
    16 y = data[:,2:3]
    17 
    18 #----------------------均值归一化---------------------
    19 mu = np.mean(X,0)
    20 sigma = np.std(X,0)
    21 X_norm = np.divide(np.subtract(X,mu),sigma)
    22 one = np.ones(m)   #添加第一列1
    23 X_norm = np.insert(X_norm,0,values=one,axis=1)
    24 # print(mu)
    25 # print(sigma)
    26 # print(X_norm)
    27 
    28 #----------------------梯度下降-----------------------
    29 alpha = 0.05
    30 num_iters = 100
    31 theta = np.zeros((3,1));
    32 J_history = np.zeros((num_iters,1))
    33 for iter in range(0,num_iters):
    34     theta = theta - alpha/m*np.dot(X_norm.T,(np.dot(X_norm,theta)-y))
    35     J_history[iter] = computeCost(X_norm,y,theta)
    36 # print(theta)
    37 x_col = np.arange(0,num_iters)
    38 plt.plot(x_col,J_history,'-b')
    39 plt.xlabel('Number of iterations')
    40 plt.ylabel('Cost J')
    41 plt.show()
    42 
    43 #----------使用上述结果对[1650,3]的数据进行预测--------
    44 test1 = [1,1650,3]
    45 test1[1:3] = np.divide(np.subtract(test1[1:3],mu),sigma)
    46 price = np.dot(test1,theta)
    47 print(price)        #输出预测结果[292455.63375132]
    48 
    49 #-------------使用正规方程法求解----------------------
    50 one = np.ones(m)
    51 X = np.insert(X,0,values=one,axis=1)
    52 theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.T,X)),X.T),y)
    53 # print(theta)
    54 price = np.dot([1,1650,3],theta)
    55 print(price)       #输出预测结果[293081.46433497]

    运行结果:【一个疑惑>>两种方法求解的估算价格很小,但θ相差较大?】

  • 相关阅读:
    无限风光 : 近来地形算法学习小结
    上帝的天空之岛
    Layered>Variance>Shadow Map
    好事多磨:Ogre1.7 编译记
    蒙特卡罗(Monte Carlo)方法(转自百度百科)
    linux下压缩打包命令合辑
    Ubuntu Linux 环境搭建|adnroid篇
    个人知识管理(转)
    ubuntu 跳强技巧(转)
    Ubuntu Linux环境搭建|Java篇
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11647825.html
Copyright © 2011-2022 走看看