zoukankan      html  css  js  c++  java
  • 机器学习作业(二)逻辑回归——Python(numpy)实现

    题目太长啦!文档下载【传送门

    第1题

    简述:实现逻辑回归。

    此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客【传送门】。

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 import scipy.optimize as op
     4 
     5 #S函数
     6 def sigmoid(z):
     7     g = 1/(1+np.exp(-z))
     8     return g
     9 
    10 #cost计算函数
    11 def costFunction(theta, X, y):
    12     theta = np.array(theta).reshape((np.size(theta),1))
    13     m = np.size(y)
    14     h = sigmoid(np.dot(X, theta))
    15     J = 1/m*(-np.dot(y.T, np.log(h)) - np.dot((1-y.T), np.log(1-h)))
    16     return J.flatten()
    17 
    18 def gradient(theta, X, y):
    19     theta = np.array(theta).reshape((np.size(theta), 1))
    20     m = np.size(y)
    21     h = sigmoid(np.dot(X, theta))
    22     grad = 1/m*np.dot(X.T, h - y)
    23     return grad.flatten()
    24 
    25 
    26 #读取数据,第一列是成绩1,第二列是成绩2,第三列是yes/no
    27 data = np.loadtxt('ex2data1.txt', delimiter=',', dtype='float')
    28 m = np.size(data[:, 0])
    29 # print(data)
    30 
    31 #绘制样本点
    32 X = data[:, 0:2]
    33 y = data[:, 2:3]
    34 pos = np.where(y == 1)[0]
    35 neg = np.where(y == 0)[0]
    36 X1 = X[pos, 0:2]
    37 X0 = X[neg, 0:2]
    38 plt.plot(X1[:, 0], X1[:, 1], 'k+')
    39 plt.plot(X0[:, 0], X0[:, 1], 'yo')
    40 plt.xlabel('Exam 1 score')
    41 plt.ylabel('Exam 2 score')
    42 
    43 #求解最优解
    44 one = np.ones(m)
    45 X = np.insert(X, 0, values=one, axis=1)
    46 initial_theta = np.zeros(np.size(X, 1))
    47 result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, y), method='TNC', jac=gradient)
    48 # print(result)
    49 theta = result.x
    50 cost = result.fun
    51 print('theta:', theta)
    52 print('cost:', cost)
    53 
    54 #绘制决策边界
    55 plot_x = np.array([np.min(X[:, 1]), np.max(X[:, 2])])
    56 # print(plot_x)
    57 plot_y = (-1/theta[2])*(theta[1]*plot_x+theta[0])
    58 # print(plot_y)
    59 plt.plot(plot_x,plot_y)
    60 plt.legend(labels=['Admitted', 'Not admitted'])
    61 plt.axis([30, 100, 30, 100])
    62 plt.show()
    63 
    64 #预测[45 85]成绩的学生,并计算准确率
    65 theta = np.array(theta).reshape((np.size(theta),1))
    66 z = np.dot([1, 45, 85], theta)
    67 prob = sigmoid(z)
    68 print('For a student with scores 45 and 85, we predict an admission probability of ', prob)
    69 p = np.round(sigmoid(np.dot(X,theta)))
    70 acc = np.mean(p==y)*100
    71 print('Train Accuracy: ',acc,'%')

    运行结果:

    第2题

    简述:通过正规化实现逻辑回归。

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 import scipy.optimize as op
     4 
     5 #S函数
     6 def sigmoid(z):
     7     g = 1/(1+np.exp(-z))
     8     return g
     9 
    10 #cost计算函数
    11 def costFunction(theta, X, y, lamb):
    12     theta = np.array(theta).reshape((np.size(theta), 1))
    13     m = np.size(y)
    14     h = sigmoid(np.dot(X, theta))
    15     J = 1/m*(-np.dot(y.T, np.log(h)) - np.dot((1-y.T), np.log(1-h)))
    16     # 添加项
    17     theta2 = theta[1:, 0]
    18     Jadd = lamb/(2*m)*np.sum(theta2**2)
    19     J = J + Jadd
    20     return J.flatten()
    21 
    22 #求梯度
    23 def gradient(theta, X, y, lamb):
    24     theta = np.array(theta).reshape((np.size(theta), 1))
    25     m = np.size(y)
    26     h = sigmoid(np.dot(X, theta))
    27     grad = 1/m*np.dot(X.T, h - y)
    28     #添加项
    29     theta[0,0] = 0
    30     gradadd = lamb/m*theta
    31     grad = grad + gradadd
    32     return grad.flatten()
    33 
    34 #求特征矩阵
    35 def mapFeature(X1, X2):
    36     degree = 6
    37     out = np.ones((np.size(X1),1))
    38     for i in range(1, degree+1):
    39         for j in range(0, i+1):
    40             res = np.multiply(np.power(X1, i-j), np.power(X2, j))
    41             out = np.insert(out, np.size(out[0, :]), values=res, axis=1)
    42     return out
    43 
    44 
    45 
    46 #读取数据,第一列是成绩1,第二列是成绩2,第三列是yes/no
    47 data = np.loadtxt('ex2data2.txt', delimiter=',', dtype='float')
    48 m = np.size(data[:, 0])
    49 
    50 #绘制样本点
    51 X = data[:, 0:2]
    52 y = data[:, 2:3]
    53 pos = np.where(y == 1)[0]
    54 neg = np.where(y == 0)[0]
    55 X1 = X[pos, 0:2]
    56 X0 = X[neg, 0:2]
    57 plt.plot(X1[:, 0], X1[:, 1], 'k+')
    58 plt.plot(X0[:, 0], X0[:, 1], 'yo')
    59 plt.xlabel('Microchip Test 1')
    60 plt.ylabel('Microchip Test 2')
    61 plt.legend(labels=['y = 1', 'y = 0'])
    62 
    63 #数据初始化
    64 X = mapFeature(X[:, 0], X[:, 1])
    65 # print(X)
    66 lamb = 1
    67 initial_theta = np.zeros(np.size(X, 1))
    68 
    69 #求解最优解
    70 result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, y, lamb), method='TNC', jac=gradient)
    71 # print(result)
    72 cost = result.fun
    73 theta = result.x
    74 print('theta:', theta)
    75 print('cost:', cost)
    76 
    77 #绘制决策边界
    78 u = np.linspace(-1, 1.5, 50)
    79 v = np.linspace(-1, 1.5, 50)
    80 z = np.zeros((np.size(u),np.size(v)))
    81 theta = np.array(theta).reshape((np.size(theta), 1))
    82 for i in range(0, np.size(u)):
    83     for j in range(0, np.size(v)):
    84         z[i, j] = np.dot(mapFeature(u[i], v[j]), theta)
    85 # print(z)
    86 plt.contour(u, v, z.T, [0])
    87 plt.show()
    88 
    89 #计算准确率
    90 p = np.round(sigmoid(np.dot(X,theta)))
    91 acc = np.mean(p==y)*100
    92 print('Train Accuracy: ',acc,'%')

    运行结果:

  • 相关阅读:
    PHP 正则表达式抓取网页内容。
    FZU 2252 Yu-Gi-Oh!(枚举+贪心)
    Flask 学习篇一: 搭建Python虚拟环境,安装flask,并设计RESTful API。
    Flask 学习笔记
    SSH框架搭建
    javaWeb项目(SSH框架+AJAX+百度地图API+Oracle数据库+MyEclipse+Tomcat)之二 基础Hibernate框架搭建篇
    天梯赛 大区赛 L3-014.周游世界 (Dijkstra)
    Windows 和 Mac 系统下安装git 并上传,修改项目
    浙江工业大学校赛 小M和天平
    Java实现 蓝桥杯VIP 算法训练 非递归(暴力)
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11678702.html
Copyright © 2011-2022 走看看