zoukankan      html  css  js  c++  java
  • 机器学习作业(三)多类别分类与神经网络——Matlab实现

    题目太长了!下载地址【传送门

    第1题

    简述:识别图片上的数字。

    第1步:读取数据文件:

    %% Setup the parameters you will use for this part of the exercise
    input_layer_size  = 400;  % 20x20 Input Images of Digits
    num_labels = 10;          % 10 labels, from 1 to 10
                              % (note that we have mapped "0" to label 10)
    
    % Load Training Data
    fprintf('Loading and Visualizing Data ...
    ')
    
    load('ex3data1.mat'); % training data stored in arrays X, y
    m = size(X, 1);
    
    % Randomly select 100 data points to display
    rand_indices = randperm(m);
    sel = X(rand_indices(1:100), :);
    
    displayData(sel);
    

    第2步:实现displayData函数:

    function [h, display_array] = displayData(X, example_width)
    
    % Set example_width automatically if not passed in
    if ~exist('example_width', 'var') || isempty(example_width) 
    	example_width = round(sqrt(size(X, 2)));
    end
    
    % Gray Image
    colormap(gray);
    
    % Compute rows, cols
    [m n] = size(X);
    example_height = (n / example_width);
    
    % Compute number of items to display
    display_rows = floor(sqrt(m));
    display_cols = ceil(m / display_rows);
    
    % Between images padding
    pad = 1;
    
    % Setup blank display
    display_array = - ones(pad + display_rows * (example_height + pad), ...
                           pad + display_cols * (example_width + pad));
    
    % Copy each example into a patch on the display array
    curr_ex = 1;
    for j = 1:display_rows
    	for i = 1:display_cols
    		if curr_ex > m, 
    			break; 
    		end
    		% Copy the patch
    		
    		% Get the max value of the patch
    		max_val = max(abs(X(curr_ex, :)));
    		display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
    		              pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
    						reshape(X(curr_ex, :), example_height, example_width) / max_val;
    		curr_ex = curr_ex + 1;
    	end
    	if curr_ex > m, 
    		break; 
    	end
    end
    
    % Display Image
    h = imagesc(display_array, [-1 1]);
    
    % Do not show axis
    axis image off
    
    drawnow;
    
    end

    运行结果:

    第3步:计算θ:

    lambda = 0.1;
    [all_theta] = oneVsAll(X, y, num_labels, lambda);
    

    其中oneVsAll函数:

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    
    % Some useful variables
    m = size(X, 1);
    n = size(X, 2);
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    for c = 1:num_labels,
        initial_theta = zeros(n+1, 1);
        options = optimset('GradObj', 'on', 'MaxIter', 50);
        [theta] = ...
            fmincg(@(t)(lrCostFunction(t, X, (y==c), lambda)), initial_theta, options);
        all_theta(c,:) = theta;
    end;
    
    end
    

    第4步:实现lrCostFunction函数:

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    theta2 = theta(2:end,1);
    h = sigmoid(X*theta);
    J = 1/m*(-y'*log(h)-(1-y')*log(1-h)) + lambda/(2*m)*sum(theta2.^2);
    theta(1,1) = 0;
    grad = 1/m*(X'*(h-y)) + lambda/m*theta;
    
    grad = grad(:);
    
    end

    第5步:实现sigmoid函数:

    function g = sigmoid(z)
    g = 1.0 ./ (1.0 + exp(-z));
    end

    第6步:计算预测的准确性:

    pred = predictOneVsAll(all_theta, X);
    fprintf('
    Training Set Accuracy: %f
    ', mean(double(pred == y)) * 100);
    

    其中predictOneVsAll函数:

    function p = predictOneVsAll(all_theta, X)
    
    m = size(X, 1);
    num_labels = size(all_theta, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    g = zeros(size(X, 1), num_labels); 
    for c = 1: num_labels,
        theta = all_theta(c, :);
        g(:, c) = sigmoid(X*theta');
    end
    
    [value, p] = max(g, [], 2);
    
    end
    

      

    运行结果:

    第2题

    简介:使用神经网络实现数字识别(Θ已提供)

    第1步:读取文档数据:

    %% Setup the parameters you will use for this exercise
    input_layer_size  = 400;  % 20x20 Input Images of Digits
    hidden_layer_size = 25;   % 25 hidden units
    num_labels = 10;          % 10 labels, from 1 to 10   
                              % (note that we have mapped "0" to label 10)
    
    % Load Training Data
    fprintf('Loading and Visualizing Data ...
    ')
    
    load('ex3data1.mat');
    m = size(X, 1);
    
    % Randomly select 100 data points to display
    sel = randperm(size(X, 1));
    sel = sel(1:100);
    
    displayData(X(sel, :));
    
    % Load the weights into variables Theta1 and Theta2
    load('ex3weights.mat');
    

      

    第2步:实现神经网络:

    pred = predict(Theta1, Theta2, X);
    
    fprintf('
    Training Set Accuracy: %f
    ', mean(double(pred == y)) * 100);
    

    其中predict函数:

    function p = predict(Theta1, Theta2, X)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    
    X = [ones(m,1) X];
    z2 = X*Theta1';
    a2 = sigmoid(z2);
    a2 = [ones(size(a2, 1), 1) a2];
    z3 = a2*Theta2';
    a3 = sigmoid(z3)
    [values, p] = max(a3, [], 2)
    
    end

    运行结果:

    第3步:实现单个数字识别:

    rp = randperm(m);
    
    for i = 1:m
        % Display 
        fprintf('
    Displaying Example Image
    ');
        displayData(X(rp(i), :));
    
        pred = predict(Theta1, Theta2, X(rp(i),:));
        fprintf('
    Neural Network Prediction: %d (digit %d)
    ', pred, mod(pred, 10));
        
        % Pause with quit option
        s = input('Paused - press enter to continue, q to exit:','s');
        if s == 'q'
          break
        end
    end

    运行结果:

      

  • 相关阅读:
    需求的有序化和方案的系统化
    产品 增长 口碑传播
    私域流量的价值 大悦城微信营销:14万微信会员哪来的
    产品创新阶段关口细则
    业务关键数据指标
    TOB 增长
    医美品零售门店分析
    数据赋能饮品轻食
    [已读]你不知道的JavaScript(上卷)
    [已读]移动web手册
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11694383.html
Copyright © 2011-2022 走看看