zoukankan      html  css  js  c++  java
  • 机器学习作业(六)支持向量机——Matlab实现

    题目下载【传送门

    第1题

    简述:支持向量机的实现

    (1)线性的情况:

    第1步:读取数据文件,可视化数据:

    % Load from ex6data1: 
    % You will have X, y in your environment
    load('ex6data1.mat');
    
    % Plot training data
    plotData(X, y);

    第2步:设定不同的C,使用线性核函数训练SVM,并画出决策边界:

    C = 1;
    model = svmTrain(X, y, C, @linearKernel, 1e-3, 20);
    visualizeBoundaryLinear(X, y, model);

    运行结果:

    C = 1时:

    C = 1000时:

     

    其中线性核函数linearKernel:

    function sim = linearKernel(x1, x2)
    
    % Ensure that x1 and x2 are column vectors
    x1 = x1(:); x2 = x2(:);
    
    % Compute the kernel
    sim = x1' * x2;  % dot product
    
    end
    

    高斯核函数gaussianKernel实现:

    function sim = gaussianKernel(x1, x2, sigma)
    
    % Ensure that x1 and x2 are column vectors
    x1 = x1(:); x2 = x2(:);
    
    % You need to return the following variables correctly.
    sim = 0;
    
    sim = exp(-norm(x1 - x2) ^ 2 / (2 * (sigma ^ 2)));
    
    end

    训练模型svmTrain函数(实现较为复杂,直接调用):

    function [model] = svmTrain(X, Y, C, kernelFunction, ...
                                tol, max_passes)
    %SVMTRAIN Trains an SVM classifier using a simplified version of the SMO 
    %algorithm. 
    %   [model] = SVMTRAIN(X, Y, C, kernelFunction, tol, max_passes) trains an
    %   SVM classifier and returns trained model. X is the matrix of training 
    %   examples.  Each row is a training example, and the jth column holds the 
    %   jth feature.  Y is a column matrix containing 1 for positive examples 
    %   and 0 for negative examples.  C is the standard SVM regularization 
    %   parameter.  tol is a tolerance value used for determining equality of 
    %   floating point numbers. max_passes controls the number of iterations
    %   over the dataset (without changes to alpha) before the algorithm quits.
    %
    % Note: This is a simplified version of the SMO algorithm for training
    %       SVMs. In practice, if you want to train an SVM classifier, we
    %       recommend using an optimized package such as:  
    %
    %           LIBSVM   (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
    %           SVMLight (http://svmlight.joachims.org/)
    %
    %
    
    if ~exist('tol', 'var') || isempty(tol)
        tol = 1e-3;
    end
    
    if ~exist('max_passes', 'var') || isempty(max_passes)
        max_passes = 5;
    end
    
    % Data parameters
    m = size(X, 1);
    n = size(X, 2);
    
    % Map 0 to -1
    Y(Y==0) = -1;
    
    % Variables
    alphas = zeros(m, 1);
    b = 0;
    E = zeros(m, 1);
    passes = 0;
    eta = 0;
    L = 0;
    H = 0;
    
    % Pre-compute the Kernel Matrix since our dataset is small
    % (in practice, optimized SVM packages that handle large datasets
    %  gracefully will _not_ do this)
    % 
    % We have implemented optimized vectorized version of the Kernels here so
    % that the svm training will run faster.
    if strcmp(func2str(kernelFunction), 'linearKernel')
        % Vectorized computation for the Linear Kernel
        % This is equivalent to computing the kernel on every pair of examples
        K = X*X';
    elseif strfind(func2str(kernelFunction), 'gaussianKernel')
        % Vectorized RBF Kernel
        % This is equivalent to computing the kernel on every pair of examples
        X2 = sum(X.^2, 2);
        K = bsxfun(@plus, X2, bsxfun(@plus, X2', - 2 * (X * X')));
        K = kernelFunction(1, 0) .^ K;
    else
        % Pre-compute the Kernel Matrix
        % The following can be slow due to the lack of vectorization
        K = zeros(m);
        for i = 1:m
            for j = i:m
                 K(i,j) = kernelFunction(X(i,:)', X(j,:)');
                 K(j,i) = K(i,j); %the matrix is symmetric
            end
        end
    end
    
    % Train
    fprintf('
    Training ...');
    dots = 12;
    while passes < max_passes,
                
        num_changed_alphas = 0;
        for i = 1:m,
            
            % Calculate Ei = f(x(i)) - y(i) using (2). 
            % E(i) = b + sum (X(i, :) * (repmat(alphas.*Y,1,n).*X)') - Y(i);
            E(i) = b + sum (alphas.*Y.*K(:,i)) - Y(i);
            
            if ((Y(i)*E(i) < -tol && alphas(i) < C) || (Y(i)*E(i) > tol && alphas(i) > 0)),
                
                % In practice, there are many heuristics one can use to select
                % the i and j. In this simplified code, we select them randomly.
                j = ceil(m * rand());
                while j == i,  % Make sure i 
    eq j
                    j = ceil(m * rand());
                end
    
                % Calculate Ej = f(x(j)) - y(j) using (2).
                E(j) = b + sum (alphas.*Y.*K(:,j)) - Y(j);
    
                % Save old alphas
                alpha_i_old = alphas(i);
                alpha_j_old = alphas(j);
                
                % Compute L and H by (10) or (11). 
                if (Y(i) == Y(j)),
                    L = max(0, alphas(j) + alphas(i) - C);
                    H = min(C, alphas(j) + alphas(i));
                else
                    L = max(0, alphas(j) - alphas(i));
                    H = min(C, C + alphas(j) - alphas(i));
                end
               
                if (L == H),
                    % continue to next i. 
                    continue;
                end
    
                % Compute eta by (14).
                eta = 2 * K(i,j) - K(i,i) - K(j,j);
                if (eta >= 0),
                    % continue to next i. 
                    continue;
                end
                
                % Compute and clip new value for alpha j using (12) and (15).
                alphas(j) = alphas(j) - (Y(j) * (E(i) - E(j))) / eta;
                
                % Clip
                alphas(j) = min (H, alphas(j));
                alphas(j) = max (L, alphas(j));
                
                % Check if change in alpha is significant
                if (abs(alphas(j) - alpha_j_old) < tol),
                    % continue to next i. 
                    % replace anyway
                    alphas(j) = alpha_j_old;
                    continue;
                end
                
                % Determine value for alpha i using (16). 
                alphas(i) = alphas(i) + Y(i)*Y(j)*(alpha_j_old - alphas(j));
                
                % Compute b1 and b2 using (17) and (18) respectively. 
                b1 = b - E(i) ...
                     - Y(i) * (alphas(i) - alpha_i_old) *  K(i,j)' ...
                     - Y(j) * (alphas(j) - alpha_j_old) *  K(i,j)';
                b2 = b - E(j) ...
                     - Y(i) * (alphas(i) - alpha_i_old) *  K(i,j)' ...
                     - Y(j) * (alphas(j) - alpha_j_old) *  K(j,j)';
    
                % Compute b by (19). 
                if (0 < alphas(i) && alphas(i) < C),
                    b = b1;
                elseif (0 < alphas(j) && alphas(j) < C),
                    b = b2;
                else
                    b = (b1+b2)/2;
                end
    
                num_changed_alphas = num_changed_alphas + 1;
    
            end
            
        end
        
        if (num_changed_alphas == 0),
            passes = passes + 1;
        else
            passes = 0;
        end
    
        fprintf('.');
        dots = dots + 1;
        if dots > 78
            dots = 0;
            fprintf('
    ');
        end
        if exist('OCTAVE_VERSION')
            fflush(stdout);
        end
    end
    fprintf(' Done! 
    
    ');
    
    % Save the model
    idx = alphas > 0;
    model.X= X(idx,:);
    model.y= Y(idx);
    model.kernelFunction = kernelFunction;
    model.b= b;
    model.alphas= alphas(idx);
    model.w = ((alphas.*Y)'*X)';
    
    end
    

    (2)非线性的情况:

    第1步:读取数据文件,并可视化数据:

    % Load from ex6data2: 
    % You will have X, y in your environment
    load('ex6data2.mat');
    
    % Plot training data
    plotData(X, y);
    

    第2步:使用高斯核函数进行训练:

    % SVM Parameters
    C = 1; sigma = 0.1;
    
    % We set the tolerance and max_passes lower here so that the code will run
    % faster. However, in practice, you will want to run the training to
    % convergence.
    model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma)); 
    visualizeBoundary(X, y, model);
    

    运行结果:

    (3)非线性情况2:

    第1步:读取数据文件,并可视化数据:

    % Load from ex6data3: 
    % You will have X, y in your environment
    load('ex6data3.mat');
    
    % Plot training data
    plotData(X, y);
    

    第2步:尝试不同的参数,选取准确率最高的:

    % Try different SVM Parameters here
    [C, sigma] = dataset3Params(X, y, Xval, yval);
    
    % Train the SVM
    model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma));
    visualizeBoundary(X, y, model);
    

    其中datasetParams函数:

    function [C, sigma] = dataset3Params(X, y, Xval, yval)
    
    % You need to return the following variables correctly.
    C = 1;
    sigma = 0.3;
    
    C_vec = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30];
    sigma_vec = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30];
    m = size(C_vec, 2);
    error_val = 1;
    for i = 1:m
        for j = 1:m
            model= svmTrain(X, y, C_vec(i), @(x1, x2) gaussianKernel(x1, x2, sigma_vec(j)));
            pred = svmPredict(model, Xval);
            error_temp = mean(double(pred ~= yval));
            if error_temp < error_val
                C = C_vec(i);
                sigma = sigma_vec(j);
                error_val = error_temp;
            end
        end
    end
    
    
    end
    

    其中svmPredict函数:

    function pred = svmPredict(model, X)
    
    % Check if we are getting a column vector, if so, then assume that we only
    % need to do prediction for a single example
    if (size(X, 2) == 1)
        % Examples should be in rows
        X = X';
    end
    
    % Dataset 
    m = size(X, 1);
    p = zeros(m, 1);
    pred = zeros(m, 1);
    
    if strcmp(func2str(model.kernelFunction), 'linearKernel')
        % We can use the weights and bias directly if working with the 
        % linear kernel
        p = X * model.w + model.b;
    elseif strfind(func2str(model.kernelFunction), 'gaussianKernel')
        % Vectorized RBF Kernel
        % This is equivalent to computing the kernel on every pair of examples
        X1 = sum(X.^2, 2);
        X2 = sum(model.X.^2, 2)';
        K = bsxfun(@plus, X1, bsxfun(@plus, X2, - 2 * X * model.X'));
        K = model.kernelFunction(1, 0) .^ K;
        K = bsxfun(@times, model.y', K);
        K = bsxfun(@times, model.alphas', K);
        p = sum(K, 2);
    else
        % Other Non-linear kernel
        for i = 1:m
            prediction = 0;
            for j = 1:size(model.X, 1)
                prediction = prediction + ...
                    model.alphas(j) * model.y(j) * ...
                    model.kernelFunction(X(i,:)', model.X(j,:)');
            end
            p(i) = prediction + model.b;
        end
    end
    
    % Convert predictions into 0 / 1
    pred(p >= 0) =  1;
    pred(p <  0) =  0;
    
    end

    运行结果:

    第2题

    概述:实现垃圾邮件的识别

    第1步:读取数据文件,对单词进行处理:

    % Extract Features
    file_contents = readFile('emailSample1.txt');
    word_indices  = processEmail(file_contents);
    
    % Print Stats
    fprintf('Word Indices: 
    ');
    fprintf(' %d', word_indices);
    fprintf('
    
    ');
    

    单词处理过程:

    去除符号、空格、换行等;

    识别出邮箱、价格、超链接、数字,替换为特定单词;

    在关键词列表中找出出现的关键词,并标记为出单词编号.

    function word_indices = processEmail(email_contents)
    
    % Load Vocabulary
    vocabList = getVocabList();
    
    % Init return value
    word_indices = [];
    
    % ========================== Preprocess Email ===========================
    
    % Find the Headers ( 
    
     and remove )
    % Uncomment the following lines if you are working with raw emails with the
    % full headers
    
    % hdrstart = strfind(email_contents, ([char(10) char(10)]));
    % email_contents = email_contents(hdrstart(1):end);
    
    % Lower case
    email_contents = lower(email_contents);
    
    % Strip all HTML
    % Looks for any expression that starts with < and ends with > and replace
    % and does not have any < or > in the tag it with a space
    email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
    
    % Handle Numbers
    % Look for one or more characters between 0-9
    email_contents = regexprep(email_contents, '[0-9]+', 'number');
    
    % Handle URLS
    % Look for strings starting with http:// or https://
    email_contents = regexprep(email_contents, ...
                               '(http|https)://[^s]*', 'httpaddr');
    
    % Handle Email Addresses
    % Look for strings with @ in the middle
    email_contents = regexprep(email_contents, '[^s]+@[^s]+', 'emailaddr');
    
    % Handle $ sign
    email_contents = regexprep(email_contents, '[$]+', 'dollar');
    
    
    % ========================== Tokenize Email ===========================
    
    % Output the email to screen as well
    fprintf('
    ==== Processed Email ====
    
    ');
    
    % Process file
    l = 0;
    
    while ~isempty(email_contents)
    
        % Tokenize and also get rid of any punctuation
        [str, email_contents] = ...
           strtok(email_contents, ...
                  [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
       
        % Remove any non alphanumeric characters
        str = regexprep(str, '[^a-zA-Z0-9]', '');
    
        % Stem the word 
        % (the porterStemmer sometimes has issues, so we use a try catch block)
        try str = porterStemmer(strtrim(str)); 
        catch str = ''; continue;
        end;
    
        % Skip the word if it is too short
        if length(str) < 1
           continue;
        end
    
        for i = 1:size(vocabList),
            if strcmp(str, vocabList(i)),
                word_indices = [word_indices i];
            end
        end    
    
        % Print to screen, ensuring that the output lines are not too long
        if (l + length(str) + 1) > 78
            fprintf('
    ');
            l = 0;
        end
        fprintf('%s ', str);
        l = l + length(str) + 1;
    
    end
    
    % Print footer
    fprintf('
    
    =========================
    ');
    
    end
    

    其中读取关键字列表函数:

    function vocabList = getVocabList()
    
    %% Read the fixed vocabulary list
    fid = fopen('vocab.txt');
    
    % Store all dictionary words in cell array vocab{}
    n = 1899;  % Total number of words in the dictionary
    
    % For ease of implementation, we use a struct to map the strings => integers
    % In practice, you'll want to use some form of hashmap
    vocabList = cell(n, 1);
    for i = 1:n
        % Word Index (can ignore since it will be = i)
        fscanf(fid, '%d', 1);
        % Actual Word
        vocabList{i} = fscanf(fid, '%s', 1);
    end
    fclose(fid);
    
    end
    

    第3步:对关键字进行特征值标记,出现的关键词标记为1:

    % Extract Features
    features  = emailFeatures(word_indices);
    
    % Print Stats
    fprintf('Length of feature vector: %d
    ', length(features));
    fprintf('Number of non-zero entries: %d
    ', sum(features > 0));
    

    其中emailFeatures函数为:

    function x = emailFeatures(word_indices)
    
    % Total number of words in the dictionary
    n = 1899;
    
    % You need to return the following variables correctly.
    x = zeros(n, 1);
    
    for i = 1:size(word_indices),
        x(word_indices(i)) = 1;
    end
    
    end
    

      

    第4步:使用线性核函数进行训练,并分别计算训练集准确率和测试集准确率:

    % Load the Spam Email dataset
    % You will have X, y in your environment
    load('spamTrain.mat');
    
    fprintf('
    Training Linear SVM (Spam Classification)
    ')
    fprintf('(this may take 1 to 2 minutes) ...
    ')
    
    C = 0.1;
    model = svmTrain(X, y, C, @linearKernel);
    
    p = svmPredict(model, X);
    
    fprintf('Training Accuracy: %f
    ', mean(double(p == y)) * 100);
    
    % Load the test dataset
    % You will have Xtest, ytest in your environment
    load('spamTest.mat');
    
    fprintf('
    Evaluating the trained Linear SVM on a test set ...
    ')
    
    p = svmPredict(model, Xtest);
    
    fprintf('Test Accuracy: %f
    ', mean(double(p == ytest)) * 100);

    运行结果:

    第5步:找出最高权重的关键词:

    % Sort the weights and obtin the vocabulary list
    [weight, idx] = sort(model.w, 'descend');
    vocabList = getVocabList();
    
    fprintf('
    Top predictors of spam: 
    ');
    for i = 1:15
        fprintf(' %-15s (%f) 
    ', vocabList{idx(i)}, weight(i));
    end
    
    fprintf('
    
    ');
    fprintf('
    Program paused. Press enter to continue.
    ');
    pause;

    运行结果:

  • 相关阅读:
    算法习题---3.11换抵挡装置(UVa1588)
    这不是bug,而是语言特性
    Makefile 11——支持头文件目录指定
    Makefile 10——打造更专业的编译环境-huge项目
    Makefile 9——为依赖关系文件建立依赖关系
    Makefile 8——使用依赖关系文件
    FreeRTOS——1
    Makefile 7——自动生成依赖关系 三颗星
    Makefile学习之路6——让编译环境更加有序
    RCC—使用 HSE/HSI 配置时钟 ---时钟树
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11742433.html
Copyright © 2011-2022 走看看