How Many Tables
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 60960 Accepted Submission(s): 30510
Problem Description
Today
is Ignatius' birthday. He invites a lot of friends. Now it's dinner
time. Ignatius wants to know how many tables he needs at least. You have
to notice that not all the friends know each other, and all the friends
do not want to stay with strangers.
One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.
For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.
For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
Input
The
input starts with an integer T(1<=T<=25) which indicate the
number of test cases. Then T test cases follow. Each test case starts
with two integers N and M(1<=N,M<=1000). N indicates the number of
friends, the friends are marked from 1 to N. Then M lines follow. Each
line consists of two integers A and B(A!=B), that means friend A and
friend B know each other. There will be a blank line between two cases.
Output
For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.
Sample Input
2
5 3
1 2
2 3
4 5
5 1
2 5
Sample Output
2
4
Author
Ignatius.L
Source
Recommend
Eddy
Statistic | Submit | Discuss | Note
题意
若干人聚餐吃饭准备桌子,认识的可以坐一桌,认识不需要互相认识,只要有A -> B, B -> C, 就有A -> C。
思路
认识的人并在一起,之后O(n)跑一遍,同一个并查集的人放在一个桌子上,如果桌子上有人则ans++
CODE
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <iostream> 5 #include <cmath> 6 #include <assert.h> 7 #include <vector> 8 9 #define dbg(x) cout << #x << "=" << x << endl 10 11 using namespace std; 12 typedef long long LL; 13 const int maxn = 1007; 14 15 int fa[maxn]; 16 int n,m,ans,cnt; 17 int a[maxn]; 18 int tot[maxn]; 19 //vector <int> v; 20 21 void init() 22 { 23 for(int i = 1; i <= n; i++) { 24 fa[i] = i; 25 } 26 } 27 28 int fid(int x) 29 { 30 int r = x; 31 while(fa[r] != r) { 32 r = fa[r]; 33 } 34 int i,j;///路径压缩 35 i = x; 36 while(fa[i] != r) { 37 j = fa[i]; 38 fa[i] = r; 39 i = j; 40 } 41 return r; 42 } 43 44 void join(int r1, int r2)///合并 45 { 46 int fidroot1 = fid(r1), fidroot2 = fid(r2); 47 //int root = min(fidroot1, fidroot2); 48 if(fidroot1 != fidroot2) { 49 fa[fidroot2] = fidroot1; 50 //fa[fidroot2] = root; 51 } 52 } 53 54 template<class T>inline void read(T &res) 55 { 56 char c;T flag=1; 57 while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0'; 58 while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag; 59 } 60 61 namespace _buff { 62 const size_t BUFF = 1 << 19; 63 char ibuf[BUFF], *ib = ibuf, *ie = ibuf; 64 char getc() { 65 if (ib == ie) { 66 ib = ibuf; 67 ie = ibuf + fread(ibuf, 1, BUFF, stdin); 68 } 69 return ib == ie ? -1 : *ib++; 70 } 71 } 72 73 int qread() { 74 using namespace _buff; 75 int ret = 0; 76 bool pos = true; 77 char c = getc(); 78 for (; (c < '0' || c > '9') && c != '-'; c = getc()) { 79 assert(~c); 80 } 81 if (c == '-') { 82 pos = false; 83 c = getc(); 84 } 85 for (; c >= '0' && c <= '9'; c = getc()) { 86 ret = (ret << 3) + (ret << 1) + (c ^ 48); 87 } 88 return pos ? ret : -ret; 89 } 90 91 int main() 92 { 93 int t; 94 scanf("%d",&t); 95 while(t--) { 96 memset(tot, 0, sizeof(tot)); 97 scanf("%d %d",&n, &m); 98 init(); 99 for(int i = 1; i <= m; ++i) { 100 int a, b; 101 scanf("%d %d", &a, &b); 102 join(a,b); 103 } 104 for(int i = 1; i <= n; ++i) { 105 int x = fid(i); 106 tot[x]++; 107 } 108 int ans = 0; 109 for(int i = 1; i <= n; ++i) { 110 if(tot[i]) ans++; 111 } 112 cout << ans << endl; 113 } 114 return 0; 115 }