思路
题目已经给出了暗示
即题目中给出了一个二分图
显然,可以把人和桌子作为二分图的两个阵营
由于题目中给出的限制:每个单位的人都必须坐在不同的桌子上
所以把单位向每个桌子连一条流量为1的边
由S向单位连单位人数的边
由桌子向T连桌子容量的边
然后跑一次最大流,最后枚举每个单位的邻接边,通过判断残量网络上的值可以求出这个人去了哪张桌子
朴素的Dinic会T最后一个点
考虑当前弧优化来优化朴素Dinic算法,只需要70ms即可跑完
CODE
1 #include <bits/stdc++.h> 2 #define dbg(x) cout << #x << "=" << x << endl 3 #define eps 1e-8 4 #define pi acos(-1.0) 5 6 using namespace std; 7 typedef long long LL; 8 9 const int inf = 0x3f3f3f3f; 10 11 template<class T>inline void read(T &res) 12 { 13 char c;T flag=1; 14 while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0'; 15 while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag; 16 } 17 18 namespace _buff { 19 const size_t BUFF = 1 << 19; 20 char ibuf[BUFF], *ib = ibuf, *ie = ibuf; 21 char getc() { 22 if (ib == ie) { 23 ib = ibuf; 24 ie = ibuf + fread(ibuf, 1, BUFF, stdin); 25 } 26 return ib == ie ? -1 : *ib++; 27 } 28 } 29 30 int qread() { 31 using namespace _buff; 32 int ret = 0; 33 bool pos = true; 34 char c = getc(); 35 for (; (c < '0' || c > '9') && c != '-'; c = getc()) { 36 assert(~c); 37 } 38 if (c == '-') { 39 pos = false; 40 c = getc(); 41 } 42 for (; c >= '0' && c <= '9'; c = getc()) { 43 ret = (ret << 3) + (ret << 1) + (c ^ 48); 44 } 45 return pos ? ret : -ret; 46 } 47 48 const int maxn = 5e4 + 7; 49 50 int s, t, cnt = 1; 51 int head[maxn << 1], edge[maxn << 1], nxt[maxn << 1], vis[maxn << 1]; 52 int w[maxn << 1];//残量网络 53 int rev[maxn << 1]; 54 int depth[maxn << 1];//图层 55 int n, m; 56 int cur[maxn << 1];//当前弧优化 57 58 void BuildGraph(int u, int v, int cap) { 59 ++cnt; 60 edge[cnt] = v; 61 nxt[cnt] = head[u]; 62 rev[cnt] = cnt + 1; 63 w[cnt] = cap; 64 head[u] = cnt; 65 66 ++cnt; 67 edge[cnt] = u; 68 nxt[cnt] = head[v]; 69 w[cnt] = 0; 70 rev[cnt] = cnt - 1; 71 head[v] = cnt; 72 } 73 74 bool bfs(int x) { 75 queue<int> q; 76 for ( int i = 0; i <= t; ++i ) { 77 cur[i] = head[i]; 78 } 79 while(!q.empty()) { 80 q.pop(); 81 } 82 memset(depth, 63, sizeof(depth)); 83 depth[s] = 0; 84 q.push(s); 85 do { 86 int u = q.front(); 87 q.pop(); 88 for ( int i = head[u]; i; i = nxt[i] ) { 89 int v = edge[i]; 90 if(w[i] > 0 && depth[u] + 1 < depth[v]) { 91 depth[v] = depth[u] + 1; 92 q.push(v); 93 if(v == t) { 94 return true; 95 } 96 } 97 } 98 } while (!q.empty()); 99 if(depth[t] < inf) 100 return true; 101 return false; 102 } 103 104 int dfs(int u, int dist) { 105 if(!dist || u == t) { 106 return dist; 107 } 108 int flow = 0, f; 109 for ( int i = cur[u]; i; i = nxt[i] ) { 110 cur[u] = 1; 111 int v = edge[i]; 112 if(depth[v] == depth[u] + 1 && (f = dfs(v, min(dist, w[i])))) { 113 flow += f; 114 dist -= f; 115 w[i] -= f; 116 w[i ^ 1] += f; 117 if(!dist) 118 break; 119 } 120 } 121 return flow; 122 } 123 124 int pp[maxn]; 125 int table[maxn]; 126 int sum = 0; 127 128 int main() 129 { 130 //freopen("data.txt", "r", stdin); 131 read(m); read(n); 132 for ( int i = 1; i <= m; ++i ) { 133 read(pp[i]); 134 sum += pp[i]; 135 } 136 for ( int i = 1; i <= n; ++i ) { 137 read(table[i]); 138 } 139 s = 0, t = n + m + 1; 140 for ( int i = 1; i <= m; ++i ) { 141 BuildGraph(s, i, pp[i]); 142 for ( int j = 1; j <= n; ++j ) { 143 BuildGraph(i, j + m, 1); 144 } 145 } 146 for ( int i = 1; i <= n; ++i ) { 147 //printf("table[%d]:%d ",i, table[i]); 148 BuildGraph(i + m, t, table[i]); 149 } 150 //dbg(sum); 151 int ans = 0; 152 while(bfs(s)) { 153 ans += dfs(0, 0x7f7f7f7f); 154 } 155 //dbg(ans); 156 if(sum != ans) { 157 puts("0"); 158 } 159 else { 160 cout << 1 << endl; 161 for ( int i = 1; i <= m; ++i ) { 162 for ( int j = head[i]; j; j = nxt[j] ) { 163 int to = edge[j]; 164 if(to != t && !w[j]) { 165 printf("%d ",to - m); 166 //printf("cap[%d]:%d ",j, w[j]); 167 } 168 } 169 puts(""); 170 } 171 } 172 return 0; 173 }