zoukankan      html  css  js  c++  java
  • Solution -「NOI 2020」时代的眼泪

    Description

    Link

    给出一个二维平面以及一些点,保证点不在同行 / 同列。每次询问求出一个子矩阵里面的顺序对。

    Solution

    卡常,卡你吗。

    膜拜 dX。

    基本是把 dX 的题解贺了过来所以没啥参考的价值。

    不过有很多细节的处理不一样,大概能算个 (frac{1}{50}) 成新?

    对序列分块,把贡献分成 整块 - 散块 / 整块 - 整块/ 散块 - 整块 / 散块 - 散块 以及 散块内部 / 整块内部 共六种贡献。

    ( extit{ans}_{0}(l,r,x,y)) 为询问 (l,r,x,y) 的答案。

    同时预处理出 ( extit{lb}(i,j), extit{ub}(i,j)) 分别表示在块 (i) 中数 (j)std::lower_bound / std::upper_bound 值,下文如果写成单元函数的形式那么就是省去了第一维。

    以及预先做一个块内排序,记为 ( extit{ord}(i,j)),表示块 (i) 中排序后的第 (j) 个元素。

    注意本文在每个 subtask 定义的东西在其他 subtask 依然适用

    • 散块 - 散块;

    两边的都是 (sqrt{n}) 级别,拉出来分别排序后归并计算顺序对即可。

    • 散块内部

    考虑如何对 ( extit{ans}_{0}(l,r,x,y)) 进行容斥。

    主要矛盾集中在:会出现 ((ain[1,x),bin[x,y])) 这样的贡献。令 ( extit{cnt}_{0}(i,j)) 表示 ([ extit{lp},i])( extit{rank}_{1}) 小于 (j) 的数的数量,其中 ( extit{lp}) 是当前块的左端点,下同,如果出现 ( extit{rp}) 同理,( extit{rank}_{1}) 的定义见下文。

    则容斥可以写为 ( extit{ans}_{0}(l,r,x,y)= extit{ans}_{0}(l,r,1,y)- extit{ans}_{0}(l,r,1,x-1)-sum_{i=l}^{r}[a_{i}in[x,y]]cdot extit{cnt}_{0}(i, extit{lb}(x)-1))

    又有 ( extit{ans}_{0}(l,r,1,x)=sum_{i=l}^{r}[a_{i}leqslant x]cdot extit{cnt}_{0}(i, extit{rank}_{1}(i))),我们就可以做到单次 (mathcal{O}(sqrt{n})),注意的 (l,r) 触及散块边界者不同时,对 ( extit{cnt}_{0}) 的容斥也有区别。

    • 整块 - 整块

    ( extit{cnt}_{1}(i,j)) 为块 ([1,i])(leqslant j) 的元素个数,( extit{ans}_{1}(L,R,x,y)) 为块 ([L,R]) 的答案,以及 ( extit{rank}_{0}(i,j)) 是块 (i) 中排名 (j) 的元素在原数组中的下标。

    我们掏出传统容斥:( extit{ans}_{1}(L,R,x,y)= extit{ans}_{1}(L,R,1,y)- extit{ans}_{1}(L,R,1,x-1)-sum_{i=L}^{R}P_{i}Q_{i})(P_{i}) 是块 ([L,i))(<x) 的元素个数,(Q_{i}) 是块 (i)(in[x,y]) 的元素个数。

    考虑算 ( extit{ans}_{1}(L,R,1,x))

    定义 ( extit{rank}_{1}(i,j)) 为块 (i) 中第 (j) 个元素的排名(从小到大,下同),( extit{rank}_{2}(i,j)) 为块 (i) 中满足 (<j) 的最大元素的排名,( extit{pre}_{b}(i,j)) 为块 ([i,j]) 中所有 (< extit{rank}_{1}(i,j)) 的元素数量。

    易知 ( extit{pre}_{b}(i,j)= extit{cnt}_{1}(i, extit{rank}_{1}(i,j)-1)),再定义 (overset{sqrt{n},sqrt{n},sqrt{n}}{ extit{cp}_{0}(i,L,r)}) 为块 ([1,L]) 与块 (i)(r) 小的元素组成的顺序对数量,同样易知 ( extit{cp}_{0}(i,L,r)=sum_{kin T}[ extit{rank}_{1}(i,k)leqslant r]cdot extit{pre}_{b}(L, extit{rank}_{1}(i,k))),其中 (T) 是块 (i) 的元素集。但这样搞状态数 (mathcal{O}(nsqrt{n})) 转移还要 (mathcal{sqrt{n}}) 而且不好前缀和。

    不过可以发现使用 ( extit{ord}) 数组 ( extit{cp}_{0}) 就可以递推了:( extit{cp}_{0}(i,L,r)=sum_{k=lp}^{r+lp-1} extit{pre}_{b}(L,k)= extit{cp}_{0}(i,L,r-1)+ extit{pre}_{b}(L,r+lp-1))

    然后 ( extit{ans}_{1}(L,R,1,x)=sum_{i=L+1}^{R} extit{cp}_{0}(i,i-1, extit{rank}_{2}(i,x))- extit{cp}_{0}(i,L-1, extit{rank}_{2}(i,x)))

    预处理 ( extit{cp}_{0})(mathcal{O}(nsqrt{n})),单次回答 (mathcal{O}(sqrt{n}))

    • 散块 - 整块

    枚举散块里面的元素,利用 ( extit{cnt}_{1}(i,j)) 计算答案。

    具体是令散块元素集为 (T),整块编号为 (L,R)(sum_{iin T} extit{cnt}_{1}(R,i)- extit{cnt}_{1}(L-1,i))

    • 整块 - 散块

    和上面有什么区别吗?

    • 整块内部

    预处理数组 (overset{sqrt{n},sqrt{n},sqrt{n}}{ extit{cp}_{1}(i,x,y)}) 表示取 ( extit{ord}(i,xdots y)) 组成的序列的顺序对数量。

    ( extit{rank}_{0}) 来预处理:( extit{cp}_{1}(i,x,y)= extit{cp}_{1}(i,x,y-1)+ extit{cnt}_{0}( extit{rank}_{0}(i,y),y-1)- extit{cnt}_{0}( extit{rank}_{0}(i,y),x-1))


    综上,这个问题得以一个 (mathcal{O}(nsqrt{n})) 的在线算法解决。

    代码也是抄的 dX,像个 shit 一样就折叠了。

    % 死X
    //almost copied from dead_X sry
    //kouhu has no qiantu
    #include<bits/stdc++.h>
    typedef long long ll;
    using namespace std;
    #define getchar() (p1==p2 && (p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
    char buf[1<<21],*p1=buf,*p2=buf;
    inline int Read()
    {
    	int x=0;char c=getchar();
    	while(c<'0' || c>'9') c=getchar();
    	while(c>='0' && c<='9') x=x*10+(c&15),c=getchar();
    	return x;
    }
    const int N=101111,A=460,BS=A+10;
    ll cp0[BS][BS][BS];
    int a[N],rk0[BS][BS],cnt0[BS][N],cp1[BS][BS][BS],lb[BS][N],rk1[N],cnt1[BS][N],L[BS],R[BS];
    bool cmp(int x,int y) { return a[x]<a[y]; }
    namespace IO{
        const int sz=1<<22;
        char a[sz+5],b[sz+5],*p1=a,*p2=a,*t=b,p[105];
        inline char gc(){
            return p1==p2?(p2=(p1=a)+fread(a,1,sz,stdin),p1==p2?EOF:*p1++):*p1++;
        }
        template<class T> void gi(T& x){
            x=0; char c=gc();
            for(;c<'0'||c>'9';c=gc());
            for(;c>='0'&&c<='9';c=gc())
                x=(x<<3)+(x<<1)+(c-'0');
        }
        inline void flush(){fwrite(b,1,t-b,stdout),t=b; }
        inline void pc(char x){*t++=x; if(t-b==sz) flush(); }
        template<class T> void pi(T x,char c='
    '){
            if(x<0) x=-x;
            if(x==0) pc('0'); int t=0;
            for(;x;x/=10) p[++t]=x%10+'0';
            for(;t;--t) pc(p[t]); pc(c);
        }
        struct F{~F(){flush();}}f; 
    }
    using IO::gi;
    using IO::pi;
    inline int read() { int r; gi(r); return r; }
    int main(){
    #ifdef ONLINE_JUDGE
    	freopen("tears.in","r",stdin);
    	freopen("tears.out","w",stdout);
    #endif
    	int n=read(),m=read(),B=n/A;
    	for(int i=0;i<n;++i)a[i]=read();
    	for(int i=n;i<(B+1)*A;++i)a[i]=i;
    	for(int i=0;i<=B;++i){
    		for(int j=i*A,k=0;k<A;++j,++k)rk0[i][k]=j;
    		sort(rk0[i],rk0[i]+A,[](int x,int y){return a[x]<a[y];});
    		for(int j=0;j<A;++j)rk1[rk0[i][j]]=j,cnt0[j][rk0[i][j]]=1;
    		for(int j=i*A+1;j<(i+1)*A;++j)
    			for(int k=0;k<A;++k)cnt0[k][j]+=cnt0[k][j-1];
    		for(int j=i*A;j<(i+1)*A;++j)
    			for(int k=1;k<A;++k)cnt0[k][j]+=cnt0[k-1][j];
    		for(int j=i*A;j<(i+1)*A;++j)++cnt1[i][a[j]];
    		if(i)for(int j=1;j<=101000;++j)cnt1[i][j]+=cnt1[i-1][j];
    		for(int j=1,k=0;j<=101000;++j)(k<A)&&(j>=a[rk0[i][k]])&&(++k),lb[i][j]=k;
    	}
    	for(int i=0;i<=B;++i)
    		for(int j=1;j<=101000;++j)cnt1[i][j]+=cnt1[i][j-1];
    	for(int i=1;i<B;++i)for(int j=0;j<i;++j)for(int k=0;k<A;++k)
    		cp0[i][j][k+1]=cnt1[j][a[rk0[i][k]]]+cp0[i][j][k];
    	for(int i=0;i<B;++i)for(int j=0;j<A;++j)for(int k=j+1;k<A;++k)
    		cp1[i][j][k]=cp1[i][j][k-1]+cnt0[k-1][rk0[i][k]]-((j==0)?0:cnt0[j-1][rk0[i][k]]);
    	for(;m;--m){
    		int l=read()-1,r=read()-1,x=read(),y=read(),bl=l/A,br=r/A;
    		if(bl==br){
    			int ans=0;
    			for(int i=l;i<=r;++i){
    				if(x<=a[i]&&a[i]<=y&&rk1[i])ans+=cnt0[rk1[i]-1][i]-((l%A)?cnt0[rk1[i]-1][l-1]:0);
    				if(lb[bl][x-1]&&x<=a[i]&&a[i]<=y)ans-=cnt0[lb[bl][x-1]-1][i]-((l%A&&lb[bl][x-1])?cnt0[lb[bl][x-1]-1][l-1]:0);
    			}
    			pi(ans);
    		}
    		else{
    			ll ans=0;
    			for(int i=l;i<(bl+1)*A;++i){
    				if(x<=a[i]&&a[i]<=y&&rk1[i])ans+=cnt0[rk1[i]-1][i]-((l%A)?cnt0[rk1[i]-1][l-1]:0);
    				if(lb[bl][x-1]&&x<=a[i]&&a[i]<=y)ans-=cnt0[lb[bl][x-1]-1][i]-((l%A&&lb[bl][x-1])?cnt0[lb[bl][x-1]-1][l-1]:0);
    				if(x<=a[i]&&a[i]<=y)ans+=cnt1[br-1][y]-cnt1[bl][y]-cnt1[br-1][a[i]]+cnt1[bl][a[i]];
    			}
    			for(int i=br*A;i<=r;++i){
    				if(x<=a[i]&&a[i]<=y&&rk1[i])ans+=cnt0[rk1[i]-1][i];
    				if(lb[br][x-1]&&x<=a[i]&&a[i]<=y)ans-=cnt0[lb[br][x-1]-1][i];
    				if(x<=a[i]&&a[i]<=y)ans+=cnt1[br-1][a[i]]-cnt1[bl][a[i]]-cnt1[br-1][x-1]+cnt1[bl][x-1];
    			}
    			int lt=0,rt=0;
    			for(int i=0;i<A;++i){
    				if(rk0[bl][i]>=l&&x<=a[rk0[bl][i]]&&a[rk0[bl][i]]<=y)L[++lt]=rk0[bl][i];
    				if(rk0[br][i]<=r&&x<=a[rk0[br][i]]&&a[rk0[br][i]]<=y)R[++rt]=rk0[br][i];
    			}
    			for(int i=1,t=1;i<=rt;++i){
    				while(t<=lt&&a[L[t]]<a[R[i]])++t;
    				ans+=t-1;
    			}
    			for(int i=bl+1;i<br;++i)if(lb[i][y])ans+=cp1[i][lb[i][x-1]][lb[i][y]-1];
    			for(int i=bl+2;i<br;++i)
    				ans+=cp0[i][i-1][lb[i][y]]-cp0[i][bl][lb[i][y]]-cp0[i][i-1][lb[i][x-1]]+cp0[i][bl][lb[i][x-1]],
    				ans-=ll(cnt1[i][y]-cnt1[i-1][y]-cnt1[i][x-1]+cnt1[i-1][x-1])*(cnt1[i-1][x-1]-cnt1[bl][x-1]);
    			pi(ans);
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    查看版本号以及如何升级
    http协商缓存VS强缓存
    「JOISC 2012」星座(凸包)
    「科技」求欧拉数单项
    「科技」在线 O(1) 逆元
    「JOISC 2017 Day 3」自然公园(交互)
    「IOI 2021」分糖果(线段树)
    「EOJ 317A」击鼓传花(类欧)
    「CF 1483E」Vabank(交互,构造)
    「NOIP 2020」微信步数(计数)
  • 原文地址:https://www.cnblogs.com/orchid-any/p/14933729.html
Copyright © 2011-2022 走看看