zoukankan      html  css  js  c++  java
  • Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4793    Accepted Submission(s): 2672


    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.
     
    Input
    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
     
    Output
    Output n^n's digital root on a separate line of the output.
     
    Sample Input
    2 4 0
     
    Sample Output
    4 4

     思路:1.九余数定理  一个数的n的树根=(n-1)%9+1

    2.N个整数的树根的乘机总值=每个项元素的树根的乘积

    3.分步求余

    #include<cstdio>
    #include<cmath>
    int main()
    {
        int n;
        while(scanf("%d",&n)&&n)
        {
            int m=n;
            int i;
            int ans=1;
            m=(m-1)%9+1;//先把底数m求树根,根据  N个整数的乘积带的树根=每项元素的树根的乘积
            for(i=1;i<=n;i++)
            ans=(ans*m-1)%9+1;//分步求余
            printf("%d
    ",ans);
        }
    }
    View Code
  • 相关阅读:
    动态规划例题
    c++ 进制转换函数
    约瑟夫问题
    set的基本使用
    stl中的二分查找
    1.生成的接口返回参数不包括系统自带的参数
    查看被锁定的表,并解锁
    添加、修改表中的字段
    NPOI简单示例2—合并表头
    NPOI简单示例
  • 原文地址:https://www.cnblogs.com/orchidzjl/p/4265334.html
Copyright © 2011-2022 走看看