zoukankan      html  css  js  c++  java
  • Codeforces Round #245 (Div. 1) 429D Tricky Function (最近点对 分治)

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:

    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }
    Find a value mini ≠ j f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input
    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output
    Output a single integer — the value of mini ≠ j f(i, j).

    Example
    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2

    题意

    给出n个数,求最小的f(i,j)

    f(i,j)=(j-i)2+(sum[j]-sum[i])2

    其中sum表示前缀和。

    题解

    这个公式很像欧几里得距离,以i为x轴,sum[i]为y轴,问题就转化为最近点对问题了。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    const int maxn=1e5+5;
    typedef long long LL;
    typedef pair<LL,LL> P;
    P p[maxn];
    int a[maxn];
    LL sqr(LL x)
    {
    	return x*x;
    }
    LL dis(P x1,P x2)
    {
    	return sqr(x1.first-x2.first)+sqr(x1.second-x2.second);
    }
    bool cmpy(int x,int y)
    {
    	return p[x].second<p[y].second;
    }
    LL find(int l,int r)
    {
    	if(l+1==r)
    		return dis(p[l],p[r]);
    	int mid=(l+r)>>1;
    	LL ans=min(find(l,mid),find(mid,r));//递归求解左右两侧的最短距离
    	int cnt=0;
    	for(int i=l;i<=r;i++)
    		if(abs(p[i].first-p[mid].first)<=ans)
    			a[cnt++]=i;
    	sort(a,a+cnt,cmpy);//筛选的点然后按y轴排序
    	for(int i=0;i<cnt;i++)
    		for(int j=i+1;j<cnt&&sqr(p[a[j]].second-p[a[i]].second)<ans;j++)//这里可以剪枝
    			ans=min(ans,dis(p[a[i]],p[a[j]]));
    	return ans;
    }
    int main()
    {
    	int n;
    	scanf("%d",&n);
    	LL sum=0;
    	for(int i=0;i<n;i++)
    	{
    		int x;
    		scanf("%d",&x);
    		p[i].first=i+1;
    		sum+=x;
    		p[i].second=sum;
    	}
    	printf("%lld
    ",find(0,n-1));
    	return 0;
    }
    
  • 相关阅读:
    oracle维护表空间和数据文件
    IOS 应用的架构解析
    html5之拖放简单效果
    跟Google学习Android开发-起始篇-与其它应用程序交互(1)
    淘宝服务市场 淘宝订单同步方案
    论文阅读笔记
    页面爬虫(获取其他页面HTML)加载到自己页面
    由href return false 来看阻止默认事件
    Delete it
    Mac上利用Eclipse编译Cocos2d-x
  • 原文地址:https://www.cnblogs.com/orion7/p/8419552.html
Copyright © 2011-2022 走看看