zoukankan      html  css  js  c++  java
  • Codeforces Round #245 (Div. 1) 429D Tricky Function (最近点对 分治)

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:

    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }
    Find a value mini ≠ j f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input
    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output
    Output a single integer — the value of mini ≠ j f(i, j).

    Example
    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2

    题意

    给出n个数,求最小的f(i,j)

    f(i,j)=(j-i)2+(sum[j]-sum[i])2

    其中sum表示前缀和。

    题解

    这个公式很像欧几里得距离,以i为x轴,sum[i]为y轴,问题就转化为最近点对问题了。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    const int maxn=1e5+5;
    typedef long long LL;
    typedef pair<LL,LL> P;
    P p[maxn];
    int a[maxn];
    LL sqr(LL x)
    {
    	return x*x;
    }
    LL dis(P x1,P x2)
    {
    	return sqr(x1.first-x2.first)+sqr(x1.second-x2.second);
    }
    bool cmpy(int x,int y)
    {
    	return p[x].second<p[y].second;
    }
    LL find(int l,int r)
    {
    	if(l+1==r)
    		return dis(p[l],p[r]);
    	int mid=(l+r)>>1;
    	LL ans=min(find(l,mid),find(mid,r));//递归求解左右两侧的最短距离
    	int cnt=0;
    	for(int i=l;i<=r;i++)
    		if(abs(p[i].first-p[mid].first)<=ans)
    			a[cnt++]=i;
    	sort(a,a+cnt,cmpy);//筛选的点然后按y轴排序
    	for(int i=0;i<cnt;i++)
    		for(int j=i+1;j<cnt&&sqr(p[a[j]].second-p[a[i]].second)<ans;j++)//这里可以剪枝
    			ans=min(ans,dis(p[a[i]],p[a[j]]));
    	return ans;
    }
    int main()
    {
    	int n;
    	scanf("%d",&n);
    	LL sum=0;
    	for(int i=0;i<n;i++)
    	{
    		int x;
    		scanf("%d",&x);
    		p[i].first=i+1;
    		sum+=x;
    		p[i].second=sum;
    	}
    	printf("%lld
    ",find(0,n-1));
    	return 0;
    }
    
  • 相关阅读:
    sql行列互转
    用户角色权限设计思路
    树节点类型数据的Datatable转Json
    [C#]最简单的Base64加密解密
    WEB打印控件Lodop(V6.x)使用说明及样例
    js代码 设为首页 加入收藏
    Json字符转化成对象
    C++函数返回值为const
    7.双指针(two pointer)
    线程同步与锁
  • 原文地址:https://www.cnblogs.com/orion7/p/8419552.html
Copyright © 2011-2022 走看看