zoukankan      html  css  js  c++  java
  • 1. Facts about norm(L0, L1, L2, L∞)

    As a starter, I haven't dive into the math details of compress sensing. At his stage, I think I only need to understand what norm represents to see the big picture, then I will go back to learn math details.

    What is a norm?

    “Mathematically a norm is a total size or length of all vectors in a vector space or matrix. For simplicity, we can say that the higher the norm is, the bigger the (value in) matrix or vector is.”

    1. L0 norm

    First, L0 norm is actually not a norm, because it does not obey the rules for norm()

    Then, knowing that the L0 norm of a matrix is just the number of non-zero terms in the vector is enough.

    So we can say that L0 norm represent the sparsity of a vector, if x is k-sparse, then L0(x) = k

    Example: L0([3, 4, 0]) = 2, L0([7, 0]) = 1

    L0 norm (Non-convex) in optimization is an NP-hard problem, in compress sensing, we convert it into an L1-minimization problem.

    2. L1 norm

    L1 norm of a vector: the absolute sum of all elements in this vector

    Example: L2([3, 4]) = 7

    L1 norm of a matrix: find the absolute sum of elements for each column, then pick the biggest one, it is the L1 norm

    3. L2 norm

    L2 norm of a vector: the length of the vector, is just the Euclidean distance that we usually use, is the shortest distance to go from one point to another.

    Example: L2([3, 4]) = 5

    4. L-∞ norm

    L-∞ norm of a vector: the maximum absolute value of the element in this vector

    Example: L∞([-6, 4, 2]) = 6

  • 相关阅读:
    DB开发之oracle存储过程
    DB开发之mysql
    DB开发之oracle
    DB开发之postgresql
    Object-C开发之instancetype和id关键字
    Linux 学习笔记
    Java开发之JDK配置
    Android开发在路上:少去踩坑,多走捷径
    C/C++之Qt正则表达式
    Linux 安全配置指南
  • 原文地址:https://www.cnblogs.com/oscarz/p/13801564.html
Copyright © 2011-2022 走看看