zoukankan      html  css  js  c++  java
  • 完全背包

    完全背包问题很简单,相对于01背包只有一点点的变化。

    1.有n种不同的物体,有体积为m的一个背包;

    2.n种物体分别有自己的体积v,价值c;

    (注意是“n种“,不是"n个”,所以每种物体不限个数,随便放多少)

    输出:

    背包中能装下的最大价值

    题解:

      首先将这n种物体的体积和价值存在两个不同的数组中(v[i],表示第i种物体的体积,c[i]表示第i种物体的价值)

    在01背包的基础下,将式子进行小小的改动就是完全背包的动态规划方程:

      f[i,j]=max(f[i-1,j],f[i,j-v[i]]+c[i])

    基本上完全背包跟01背包是一样的,只不过物体可以被无限次的放入。

    一维的具体代码:

      

     1 int c[maxn];
     2 int v[maxn];
     3 
     4 int dp[maxn];
     5 
     6 for (int i = 0; i < n; i++)
     7 {
     8     for (int j = v[i]; j <= m; j++)
     9         dp[j] = max(dp[j], dp[j - v[i]] + c[i]);
    10 }

    二维的具体代码:

     1 int v[maxn];
     2 int c[maxn];
     3 int dp[maxn][maxn];
     4 
     5 for (int i = 0; i < n; i++)
     6 {
     7     for (int j = v[i]; j <= m; j++)
     8     {
     9         dp[i][j] = max(d[i - 1][j], dp[i][j - v[i]] + c[i]);
    10     }
    11 }
  • 相关阅读:
    最小公倍数
    记录输入的数字并输出
    带时间的进度条
    进度条二:普通版
    文件的练习
    《k8s权威指南》读书笔记
    面试后如何判断岗位是否符合自己要求
    索引的三星系统
    使用Mysql分区表对数据库进行优化
    MySQL索引的基本操作
  • 原文地址:https://www.cnblogs.com/ouyang_wsgwz/p/6814947.html
Copyright © 2011-2022 走看看