zoukankan      html  css  js  c++  java
  • hdu 4712Hamming Distance

    Problem Description
    (From wikipedia) For binary strings a and b the Hamming distance is equal to the number of ones in a XOR b. For calculating Hamming distance between two strings a and b, they must have equal length.
    Now given N different binary strings, please calculate the minimum Hamming distance between every pair of strings.
     
    Input
    The first line of the input is an integer T, the number of test cases.(0<T<=20) Then T test case followed. The first line of each test case is an integer N (2<=N<=100000), the number of different binary strings. Then N lines followed, each of the next N line is a string consist of five characters. Each character is '0'-'9' or 'A'-'F', it represents the hexadecimal code of the binary string. For example, the hexadecimal code "12345" represents binary string "00010010001101000101".
     
    Output
    For each test case, output the minimum Hamming distance between every pair of strings.
     
    Sample Input
    2
    2
    12345
    54321
    4
    12345
    6789A
    BCDEF
    0137F
     
    Sample Output
    6
    7
     
    Source
     
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <ctime>
     6 #define N 100010
     7 #define inf 0x3f3f3f3f
     8 using namespace std;
     9 int num[20][20];
    10 char ss[N][6];
    11 int n;
    12 
    13 int cal(int x,int y)
    14 {
    15     int ans=0;
    16     for(int i=0;i<5;i++)
    17     {
    18         int dd1,dd2;
    19         if(ss[x][i]>='0' && ss[x][i]<='9')
    20         {
    21             dd1=ss[x][i]-'0';
    22         }
    23         else
    24         {
    25             dd1=ss[x][i]-'A'+10;
    26         }
    27         if(ss[y][i]>='0' && ss[y][i]<='9')
    28         {
    29             dd2=ss[y][i]-'0';
    30         }
    31         else
    32         {
    33             dd2=ss[y][i]-'A'+10;
    34         }
    35         ans+=num[dd1][dd2];
    36     }
    37     return ans;
    38 }
    39 void solve()
    40 {
    41     srand((unsigned)time(NULL));
    42     int res=inf;
    43     for(int i=0;i<1000000;i++)
    44     {
    45         int x=rand()%n;
    46         int y=rand()%n;
    47         if(x==y)
    48         continue;
    49         int ans=cal(x,y);
    50         res=min(res,ans);
    51     }
    52     printf("%d
    ",res);
    53 }
    54 int main()
    55 {
    56     for(int i=0;i<16;i++)
    57     {
    58         for(int j=0;j<16;j++)
    59         {
    60             int dd=i^j;
    61             int len=0;
    62             int cnt=0;
    63             while(dd>=(1<<len))
    64             {
    65                 if(dd&(1<<len))
    66                 {
    67                     cnt++;
    68                 }
    69                 len++;
    70             }
    71             num[i][j]=cnt;
    72         }
    73     }
    74     int t;
    75     scanf("%d",&t);
    76     while(t--)
    77     {
    78         scanf("%d",&n);
    79         for(int i=0;i<n;i++)
    80         {
    81             scanf("%s",ss[i]);
    82         }
    83         solve();
    84     }
    85     return 0;
    86 }
    View Code

    居然是用随机函数就给过了,真厉害,算是学到了一个好方法啊,学习学习

  • 相关阅读:
    2.2.7将任意对象作为对象监视器
    2.2.6验证同步代码块时锁定当前对象的
    2.2.5synchronized代码间的同步性
    2.2.4一半异步,一半同步
    2.2.3用同步代码块解决同步方法的弊端
    FL2440 ubifs文件系统烧录遇到的问题——内核分区的重要性
    FL2440 rt3070模块ap模式移植
    FL2440 rt3070模块station模式动态获取IP地址
    FL2440 rt3070模块station模式移植
    fl2440 platform总线button字符设备驱动
  • 原文地址:https://www.cnblogs.com/ouyangduoduo/p/3310829.html
Copyright © 2011-2022 走看看