zoukankan      html  css  js  c++  java
  • Python 读取docx/txt根据词频生成云图

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    from wordcloud import WordCloud, STOPWORDS
    from imageio import imread
    from sklearn.feature_extraction.text import CountVectorizer
    import jieba
    import csv
    import docx2txt
    
    # 读docx文档
    # text = docx2txt.process("file.docx")
    # contents = text
    # outFile = open("file.txt", "w", encoding='utf-8')
    # outFile.write(text)

    # 获取文章内容 with open("djstl.txt",encoding='utf-8') as f: contents = f.read() print("contents变量的类型:", type(contents)) # 使用jieba分词,获取词的列表 contents_cut = jieba.cut(contents) print("contents_cut变量的类型:", type(contents_cut)) contents_list = " ".join(contents_cut) print("contents_list变量的类型:", type(contents_list)) # 制作词云图,collocations避免词云图中词的重复,mask定义词云图的形状,图片要有背景色 wc = WordCloud(stopwords=STOPWORDS.add("一个"), collocations=False, background_color="white", font_path=r"C:WindowsFontssimhei.ttf", width=400, height=300, random_state=42, mask=imread('timg.jpg',pilmode="RGB")) wc.generate(contents_list) wc.to_file("ciyun.png") # 使用CountVectorizer统计词频 cv = CountVectorizer() contents_count = cv.fit_transform([contents_list]) # 词有哪些 list1 = cv.get_feature_names() # 词的频率 list2 = contents_count.toarray().tolist()[0] # 将词与频率一一对应 contents_dict = dict(zip(list1, list2)) # 输出csv文件,newline="",解决输出的csv隔行问题 with open("caifu_output.csv", 'w', newline="") as f: writer = csv.writer(f) for key, value in contents_dict.items(): writer.writerow([key, value])
  • 相关阅读:
    [bzoj3224] 普通平衡树
    [总结] 三种常见的区间贪心问题
    [NOIP2014] 飞扬的小鸟
    POJ 1185 炮兵阵地
    WOJ 1538 Stones II 转化背包问题
    WOJ 1542 Countries 并查集转化新点+最短路
    UVA 11375 高精度Bign类
    2014_csu选拔1_B
    Codeforces 405D 数学问题
    Codeforces 400C 矩阵乘法 数学规律
  • 原文地址:https://www.cnblogs.com/ouzai/p/13784407.html
Copyright © 2011-2022 走看看