zoukankan      html  css  js  c++  java
  • Common Subsequence

    Problem Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp
    

    Sample Output

    4
    2
    0
    #include<iostream>
    using namespace std;
    	char a[2014],b[2014];
    		int c[2014][2014];
    int main()
    {
    	int i,j,n,m;
    
    	while(scanf("%s%s",a,b)!=EOF)
    	{
    		n=strlen(a);
    		m=strlen(b);
    	//	cout<<a<<endl;
    	//	cout<<b<<endl;
    		for(i=0;i<=n;i++)
    			c[0][i]=0;
    			for(j=0;j<=m;j++)
    		     c[j][0]=0; 
    			for(i=1;i<=n;i++)
    				for(j=1;j<=m;j++)
    					if(a[i-1]==b[j-1])
    						c[i][j]=c[i-1][j-1]+1;
    					else
    						c[i][j]=c[i-1][j]>c[i][j-1]?c[i-1][j]:c[i][j-1];
    				
    			cout<<c[n][m]<<endl;
    	}
    return 0;
    }


  • 相关阅读:
    300. Longest Increasing Subsequence_算法有误
    LIS (DP)_代码
    pthread_detach pthread_create实例
    pthread_detach
    DP(动态规划)
    括号匹配(二)
    gdb调试遇到的问题
    matplotlib 显示中文
    一个奇怪的编码 big5-hkscs
    python 重载 __hash__ __eq__
  • 原文地址:https://www.cnblogs.com/oversea201405/p/3766943.html
Copyright © 2011-2022 走看看