文件操作基本流程
计算机系统分为:计算机硬件,操作系统,应用程序三部分。
我们用python或其他语言编写的应用程序若想要把数据永久保存下来,必须要保存于硬盘中,这就涉及到应用程序要操作硬件,众所周知,应用程序是无法直接操作硬件的,这就用到了操作系统。操作系统把复杂的硬件操作封装成简单的接口给用户/应用程序使用,其中文件就是操作系统提供给应用程序来操作硬盘虚拟概念,用户或应用程序通过操作文件,可以将自己的数据永久保存下来。
有了文件的概念,我们无需再去考虑操作硬盘的细节,只需要关注操作文件的流程:
1. 打开文件,得到文件句柄并赋值给一个变量
2. 通过句柄对文件进行操作
3. 关闭文件
1 #1. 打开文件,得到文件句柄并赋值给一个变量 2 f=open('a.txt','r',encoding='utf-8') #默认打开模式就为r 3 4 #2. 通过句柄对文件进行操作 5 data=f.read() 6 7 #3. 关闭文件 8 f.close()
1、由应用程序向操作系统发起系统调用open(...)
2、操作系统打开该文件,并返回一个文件句柄给应用程序
3、应用程序将文件句柄赋值给变量f
关闭文件的 注意事项
1 打开一个文件包含两部分资源:操作系统级打开的文件+应用程序的变量。在操作完毕一个文件时,必须把与该文件的这两部分资源一个不落地回收,回收方法为: 2 1、f.close() #回收操作系统级打开的文件 3 2、del f #回收应用程序级的变量 4 5 其中del f一定要发生在f.close()之后,否则就会导致操作系统打开的文件还没有关闭,白白占用资源, 6 而python自动的垃圾回收机制决定了我们无需考虑del f,这就要求我们,在操作完毕文件后,一定要记住f.close() 7 8 虽然我这么说,但是很多同学还是会很不要脸地忘记f.close(),对于这些不长脑子的同学,我们推荐傻瓜式操作方式:使用with关键字来帮我们管理上下文 9 with open('a.txt','w') as f: 10 pass 11 12 with open('a.txt','r') as read_f,open('b.txt','w') as write_f: 13 data=read_f.read() 14 write_f.write(data)
文件编码
f=open(...)是由操作系统打开文件,那么如果我们没有为open指定编码,那么打开文件的默认编码很明显是操作系统说了算了,操作系统会用自己的默认编码去打开文件,在windows下是gbk,在linux下是utf-8。
1 #这就用到了上节课讲的字符编码的知识:若要保证不乱码,文件以什么方式存的,就要以什么方式打开。 2 f=open('a.txt','r',encoding='utf-8')
文件的打开模式
文件句柄 = open('文件路径', '模式')
模式可以是以下方式以及他们之间的组合:
Character | Meaning |
‘r' | open for reading (default) |
‘w' | open for writing, truncating the file first |
‘a' | open for writing, appending to the end of the file if it exists |
‘b' | binary mode |
‘t' | text mode (default) |
‘+' | open a disk file for updating (reading and writing) |
‘U' | universal newline mode (for backwards compatibility; should not be used in new code) |
1. 打开文件的模式有(默认为文本模式):
r ,只读模式【默认模式,文件必须存在,不存在则抛出异常】
w,只写模式【不可读;不存在则创建;存在则清空内容】
a, 之追加写模式【不可读;不存在则创建;存在则只追加内容】
2. 对于非文本文件,我们只能使用b模式,"b"表示以字节的方式操作(而所有文件也都是以字节的形式存储的,使用这种模式无需考虑文本文件的字符编码、图片文件的jgp格式、视频文件的avi格式)
rb
wb
ab
注:以b方式打开时,读取到的内容是字节类型,写入时也需要提供字节类型,不能指定编码
3."+" 表示可以同时读写某个文件
r+, 读写【可读,可写】
w+,写读【可读,可写】
a+, 写读【可读,可写】
x, 只写模式【不可读;不存在则创建,存在则报错】
x+ ,写读【可读,可写】
xb
由于历史的原因,换行符在不同的系统中有不同模式,比如在 unix中是一个
,而在windows中是‘
’,用U模式打开文件,就是支持所有的换行模式,也就说‘
’ '
' '
'都可表示换行 t是windows平台特有的所谓text mode(文本模式),区别在于会自动识别windows平台的换行符。
Files opened in binary mode (appending 'b' to the mode argument) return contents as bytes objects without any decoding.
b是以二进制的形式来读文件,但是显示出来的却不是0101,而是以字节的形式显示出来。 一个字节是8位二进制,所以计算机是自动帮你进行了转换。 请不要误会b模式是按照字节读。
文件内的光标移动
一: read(3):
1. 文件打开方式为文本模式时,代表读取3个字符
2. 文件打开方式为b模式时,代表读取3个字节
二: 其余的文件内光标移动都是以字节为单位如seek,tell,truncate
注意:
1. seek有三种移动方式0,1,2,其中1和2必须在b模式下进行,但无论哪种模式,都是以bytes为单位移动的
2. truncate是截断文件,所以文件的打开方式必须可写,但是不能用w或w+等方式打开,因为那样直接清空文件了,所以truncate要在r+或a或a+等模式下测试效果
with上下文管理
打开一个文件包含两部分资源:操作系统级打开的文件+应用程序的变量。在操作完毕一个文件时,必须把与该文件的这两部分资源一个不落地回收,回收方法为:
1、f.close() 回收操作系统级打开的文件
2、del f 回收应用程序级的变量
1 with open('a.txt','w') as f: 2 pass 3 4 with open('a.txt','r') as read_f,open('b.txt','w') as write_f: 5 data=read_f.read() 6 write_f.write(data)
文件的修改
文件的数据是存放于硬盘上的,因而只存在覆盖、不存在修改这么一说,我们平时看到的修改文件,都是模拟出来的效果,具体的说有两种实现方式:
方式一:将硬盘存放的该文件的内容全部加载到内存,在内存中是可以修改的,修改完毕后,再由内存覆盖到硬盘(word,vim,nodpad++等编辑器)
1 import os 2 3 with open('a.txt') as read_f,open('.a.txt.swap','w') as write_f: 4 data=read_f.read() #全部读入内存,如果文件很大,会很卡 5 data=data.replace('alex','SB') #在内存中完成修改 6 7 write_f.write(data) #一次性写入新文件 8 9 os.remove('a.txt') 10 os.rename('.a.txt.swap','a.txt')
方式二:将硬盘存放的该文件的内容一行一行地读入内存,修改完毕就写入新文件,最后用新文件覆盖源文件
1 import os 2 3 with open('a.txt') as read_f,open('.a.txt.swap','w') as write_f: 4 for line in read_f: 5 line=line.replace('alex','SB') 6 write_f.write(line) 7 8 os.remove('a.txt') 9 os.rename('.a.txt.swap','a.txt')
python中对文件、文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块。
得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd()
返回指定目录下的所有文件和目录名:os.listdir()
函数用来删除一个文件:os.remove()
删除多个目录:os.removedirs(r“c:python”)
检验给出的路径是否是一个文件:os.path.isfile()
检验给出的路径是否是一个目录:os.path.isdir()
判断是否是绝对路径:os.path.isabs()
检验给出的路径是否真地存:os.path.exists()
返回一个路径的目录名和文件名:os.path.split() eg os.path.split('/home/swaroop/byte/code/poem.txt') 结果:('/home/swaroop/byte/code', 'poem.txt')
分离扩展名:os.path.splitext()
获取路径名:os.path.dirname()
获取文件名:os.path.basename()
运行shell命令: os.system()
读取和设置环境变量:os.getenv() 与os.putenv()
给出当前平台使用的行终止符:os.linesep Windows使用' ',Linux使用' '而Mac使用' '
指示你正在使用的平台:os.name 对于Windows,它是'nt',而对于Linux/Unix用户,它是'posix'
重命名:os.rename(old, new)
创建多级目录:os.makedirs(r“c:python est”)
创建单个目录:os.mkdir(“test”)
获取文件属性:os.stat(file)
修改文件权限与时间戳:os.chmod(file)
终止当前进程:os.exit()
获取文件大小:os.path.getsize(filename)
文件操作:
os.mknod("test.txt") 创建空文件
fp = open("test.txt",w) 直接打开一个文件,如果文件不存在则创建文件
关于open 模式:
w 以写方式打开,
a 以追加模式打开 (从 EOF 开始, 必要时创建新文件)
r+ 以读写模式打开
w+ 以读写模式打开 (参见 w )
a+ 以读写模式打开 (参见 a )
rb 以二进制读模式打开
wb 以二进制写模式打开 (参见 w )
ab 以二进制追加模式打开 (参见 a )
rb+ 以二进制读写模式打开 (参见 r+ )
wb+ 以二进制读写模式打开 (参见 w+ )
ab+ 以二进制读写模式打开 (参见 a+ )
fp.read([size]) #size为读取的长度,以byte为单位
fp.readline([size]) #读一行,如果定义了size,有可能返回的只是一行的一部分
fp.readlines([size]) #把文件每一行作为一个list的一个成员,并返回这个list。其实它的内部是通过循环调用readline()来实现的。如果提供size参数,size是表示读取内容的总长,也就是说可能只读到文件的一部分。
fp.write(str) #把str写到文件中,write()并不会在str后加上一个换行符
fp.writelines(seq) #把seq的内容全部写到文件中(多行一次性写入)。这个函数也只是忠实地写入,不会在每行后面加上任何东西。
fp.close() #关闭文件。python会在一个文件不用后自动关闭文件,不过这一功能没有保证,最好还是养成自己关闭的习惯。 如果一个文件在关闭后还对其进行操作会产生ValueError
fp.flush() #把缓冲区的内容写入硬盘
fp.fileno() #返回一个长整型的”文件标签“
fp.isatty() #文件是否是一个终端设备文件(unix系统中的)
fp.tell() #返回文件操作标记的当前位置,以文件的开头为原点
fp.next() #返回下一行,并将文件操作标记位移到下一行。把一个file用于for … in file这样的语句时,就是调用next()函数来实现遍历的。
fp.seek(offset[,whence]) #将文件打操作标记移到offset的位置。这个offset一般是相对于文件的开头来计算的,一般为正数。但如果提供了whence参数就不一定了,whence可以为0表示从头开始计算,1表示以当前位置为原点计算。2表示以文件末尾为原点进行计算。需要注意,如果文件以a或a+的模式打开,每次进行写操作时,文件操作标记会自动返回到文件末尾。
fp.truncate([size]) #把文件裁成规定的大小,默认的是裁到当前文件操作标记的位置。如果size比文件的大小还要大,依据系统的不同可能是不改变文件,也可能是用0把文件补到相应的大小,也可能是以一些随机的内容加上去。
目录操作:
os.mkdir("file") 创建目录
复制文件:
shutil.copyfile("oldfile","newfile") oldfile和newfile都只能是文件
shutil.copy("oldfile","newfile") oldfile只能是文件夹,newfile可以是文件,也可以是目标目录
复制文件夹:
shutil.copytree("olddir","newdir") olddir和newdir都只能是目录,且newdir必须不存在
重命名文件(目录)
os.rename("oldname","newname") 文件或目录都是使用这条命令
移动文件(目录)
shutil.move("oldpos","newpos")
删除文件
os.remove("file")
删除目录
os.rmdir("dir")只能删除空目录
shutil.rmtree("dir") 空目录、有内容的目录都可以删
转换目录
os.chdir("path") 换路径
1 将文件夹下所有图片名称加上'_fc'
1 # -*- coding:utf-8 -*- 2 import re 3 import os 4 import time 5 #str.split(string)分割字符串 6 #'连接符'.join(list) 将列表组成字符串 7 def change_name(path): 8 global i 9 if not os.path.isdir(path) and not os.path.isfile(path): 10 return False 11 if os.path.isfile(path): 12 file_path = os.path.split(path) #分割出目录与文件 13 lists = file_path[1].split('.') #分割出文件与文件扩展名 14 file_ext = lists[-1] #取出后缀名(列表切片操作) 15 img_ext = ['bmp','jpeg','gif','psd','png','jpg'] 16 if file_ext in img_ext: 17 os.rename(path,file_path[0]+'/'+lists[0]+'_fc.'+file_ext) 18 i+=1 #注意这里的i是一个陷阱 19 #或者 20 #img_ext = 'bmp|jpeg|gif|psd|png|jpg' 21 #if file_ext in img_ext: 22 # print('ok---'+file_ext) 23 elif os.path.isdir(path): 24 for x in os.listdir(path): 25 change_name(os.path.join(path,x)) #os.path.join()在路径处理上很有用 26 27 28 img_dir = 'D:\xx\xx\images' 29 img_dir = img_dir.replace('\','/') 30 start = time.time() 31 i = 0 32 change_name(img_dir) 33 c = time.time() - start 34 print('程序运行耗时:%0.2f'%(c)) 35 print('总共处理了 %s 张图片'%(i)) 36 37 输出结果: 38 39 程序运行耗时:0.11 40 总共处理了 109 张图片