zoukankan      html  css  js  c++  java
  • FZOJ2110 star(DFS)

    Overpower often go to the playground with classmates. They play and chat on the playground. One day, there are a lot of stars in the sky. Suddenly, one of Overpower’s classmates ask him: “How many acute triangles whose inner angles are less than 90 degrees (regarding stars as points) can be found? Assuming all the stars are in the same plane”. Please help him to solve this problem.
     

    Input

    The first line of the input contains an integer T (T≤10), indicating the number of test cases.

    For each test case:

    The first line contains one integer n (1≤n≤100), the number of stars.

    The next n lines each contains two integers x and y (0≤|x|, |y|≤1,000,000) indicate the points, all the points are distinct.

     

    Output

    For each test case, output an integer indicating the total number of different acute triangles.
     

    Sample Input

    1
    3
    0 0
    10 0
    5 1000
    
     

    Sample Output

    1
    
    
    
    
    #include<stdio.h>
    #include<math.h>
    typedef struct nn
    {
        double x1,y1;
    }node;
    void cmp(double *a,double *b,double *c)
    {
        double tem;
        if(*a<*b){tem=*a;*a=*b;*b=tem;}
        if(*a<*c){tem=*a;*a=*c;*c=tem;}
    }
    double cacreat(double x1,double y1,double x2,double y2)
    {
        double edglen;
        edglen=sqrt(pow(x1-x2,2.0)+pow(y1-y2,2.0));
        return edglen;
    }
    int pandu(double a,double b,double c)
    {
        if(b*b+c*c-a*a>0)
        return 1;
        return 0;
    }
    double x[105],y[105];
    node s[3];
    int vist[105],n,sum;
    void dfs(int cout,int j)
    {
        double edg1,edg2,edg3;
        int i;
        s[cout].x1=x[j];s[cout].y1=y[j];
        if(cout==2)
        {
            edg1=cacreat(s[0].x1,s[0].y1,s[1].x1,s[1].y1);
            edg2=cacreat(s[0].x1,s[0].y1,s[2].x1,s[2].y1);
            edg3=cacreat(s[1].x1,s[1].y1,s[2].x1,s[2].y1);
            cmp(&edg1,&edg2,&edg3);
            if(pandu(edg1,edg2,edg3)!=0)
                    sum++;
            return ;
        }
        for(i=j+1;i<n;i++)
        if(vist[i]==0)
        {
            vist[i]=1;
            dfs(cout+1,i);
            vist[i]=0;
        }
    }
    int main()
    {
        int i,t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            for(i=0;i<n;i++)
            {
                scanf("%lf%lf",&x[i],&y[i]);
                vist[i]=0;
            }
            sum=0;
            for(i=0;i<n;i++)
            {
                vist[i]=1;
                dfs(0,i);
                vist[i]=0;
            }
            printf("%d
    ",sum);
        }
    }
    


  • 相关阅读:
    Http协议状态码总结
    ES6中的let和const
    Swiper-轮播图
    HTML5动画API—— requestAnimationFrame
    神奇的 conic-gradient 圆锥渐变
    最流行的5个前端框架对比
    jQuery适用技巧笔记整合
    PHP中的面向对象OOP中的魔术方法
    居中
    (function($){})(jQuery)
  • 原文地址:https://www.cnblogs.com/pangblog/p/3253492.html
Copyright © 2011-2022 走看看