zoukankan      html  css  js  c++  java
  • POJ 2886 Who Gets the Most Candies?

    Who Gets the Most Candies?
    Time Limit: 5000MS   Memory Limit: 131072K
    Total Submissions: 8212   Accepted: 2475
    Case Time Limit: 2000MS

    Description

    N children are sitting in a circle to play a game.

    The children are numbered from 1 to N in clockwise order. Each of them has a card with a non-zero integer on it in his/her hand. The game starts from the K-th child, who tells all the others the integer on his card and jumps out of the circle. The integer on his card tells the next child to jump out. Let A denote the integer. If A is positive, the next child will be the A-th child to the left. If A is negative, the next child will be the (A)-th child to the right.

    The game lasts until all children have jumped out of the circle. During the game, the p-th child jumping out will get F(p) candies where F(p) is the number of positive integers that perfectly divide p. Who gets the most candies?

    Input

    There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 500,000) and K (1 ≤ KN) on the first line. The next N lines contains the names of the children (consisting of at most 10 letters) and the integers (non-zero with magnitudes within 108) on their cards in increasing order of the children’s numbers, a name and an integer separated by a single space in a line with no leading or trailing spaces.

    Output

    Output one line for each test case containing the name of the luckiest child and the number of candies he/she gets. If ties occur, always choose the child who jumps out of the circle first.

    Sample Input

    4 2
    Tom 2
    Jack 4
    Mary -1
    Sam 1

    Sample Output

    Sam 3

    Source

     
    出了很多数据都正确,不由得怀疑理解错题了,结果真错了,他那第p个孩子中的p不是原来的编号,而是一次站出的顺序
    #include <iostream>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #define N 500010
    #define M 15
    using namespace std;
    bool ch[N];
    int a[N],b[N],sum[N];
    struct num
    {
        char s1[M];
        int val;
    }in[N];
    struct tree
    {
        int l,r,sum;
    }d[N*4];
    int n,m,res,ans;
    int main()
    {
        //freopen("data.in","r",stdin);
        void pre_build(int k,int l,int r);
        void get(int k,int l,int r);
        void deal(int k,int tar);
        memset(ch,true,sizeof(ch));
        for(int i=2;i<=N-10;i++)
        {
            if(ch[i])
            {
                for(int j=2;i*j<=N-10;j++)
                {
                    ch[i*j]=false;
                }
            }
        }
        int Top=0;
        for(int i=2;i<=N-10;i++)
        {
            if(ch[i])
            {
                a[Top++]=i;
            }
        }
        sum[1]=1;
        memset(b,0,sizeof(b));
        for(int i=2;i<=N-10;i++)
        {
            int co=i,x;
            for(int j=0;j<=Top-1;j++)
            {
                if(ch[co])
                {
                    b[j]++;
                    x=j;
                    break;
                }
                while(co%a[j]==0)
                {
                    b[j]++;
                    x=j;
                    co=co/a[j];
                }
                if(co==1)
                {
                    break;
                }
            }
            int s =1;
            for(int j=0;j<=x;j++)
            {
                s=s*(b[j]+1);
                b[j]=0;
            }
            sum[i]=s;
        }
        while(scanf("%d %d",&n,&m)!=EOF)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%s %d",in[i].s1,&in[i].val);
            }
            int Max,pt;
            pre_build(1,1,n);
            Max=sum[1];
            pt=m;
            for(int i=1;i<=n;i++)
            {
                if(i==1)
                {
                    int s=m%n;
                    if(s==0)
                    {
                        s=n;
                    }
                    deal(1,s);
                    if(Max<sum[i])
                    {
                        Max=sum[i];
                        pt=res;
                    }
                    continue;
                }
                ans=0;
                get(1,1,res);
                int uv;
                if(in[res].val<0)
                {
                    uv = (in[res].val*-1)%(n-i+1);
                    if(uv==0)
                    {
                        uv=n-i+1;
                    }
                    uv = (n-i+1)-uv+1+ans;
                    uv = uv%(n-i+1);
                }else
                {
                    uv = (in[res].val)%(n-i+1);
                    uv = uv+ans;
                    uv = uv%(n-i+1);
                }
                if(uv==0)
                {
                    uv = n-i+1;
                }
                deal(1,uv);
                if(Max<sum[i])
                {
                    Max=sum[i];
                    pt=res;
                }
            }
            printf("%s %d
    ",in[pt].s1,Max);
        }
        return 0;
    }
    void pushup(int k)
    {
        d[k].sum = d[k*2].sum+d[k*2+1].sum;
    }
    void pre_build(int k,int l,int r)
    {
        d[k].l = l;
        d[k].r = r;
        if(l==r)
        {
            d[k].sum=1;
            return ;
        }
        int mid=(l+r)/2;
        pre_build(k*2,l,mid);
        pre_build(k*2+1,mid+1,r);
        pushup(k);
    }
    void get(int k,int l,int r)
    {
        if(d[k].l==l&&d[k].r==r)
        {
            ans+=d[k].sum;
            return ;
        }
        int mid=(d[k].l+d[k].r)/2;
        if(mid>=r)
        {
            get(k*2,l,r);
        }else if(mid<l)
        {
            get(k*2+1,l,r);
        }else
        {
            get(k*2,l,mid);
            get(k*2+1,mid+1,r);
        }
    }
    void deal(int k,int tar)
    {
        if(d[k].l==d[k].r)
        {
            res=d[k].l;
            d[k].sum=0;
            return ;
        }
        if(d[k*2].sum<tar)
        {
            deal(k*2+1,tar-d[k*2].sum);
        }else
        {
            deal(k*2,tar);
        }
        pushup(k);
    }
    
    

  • 相关阅读:
    32位IP地址
    我们必须知道,我们终将知道。
    【Java 小白菜入门笔记 2.1】面向对象相关
    【Java 小白菜入门笔记 1.3】流程控制、数组和输入输出
    【Java 小白菜入门笔记 1.2】运算符、方法和语句
    【Java 小白菜入门笔记 1.1】常量和变量
    【论文笔记】PyTorch-BigGraph: A Large-scale Graph Embedding Framework(大规模图嵌入)
    【Java 小白菜入门笔记 1.0】简介与HelloWorld
    【NLP模型笔记】GloVe模型简介
    Python中的defaultdict函数
  • 原文地址:https://www.cnblogs.com/pangblog/p/3290222.html
Copyright © 2011-2022 走看看