这个可以证明必须从两边的任务开始交起,因为中间交的任务可以后面经过的时候再交,所以就变成了一个n*n的dp。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=1e3+9; int dp[maxn][maxn][2]; struct D { int x,t; bool operator <(const D & xx) const { return x<xx.x; } }a[maxn]; int ff(int x) { if(x<0) return -x; return x; } int main() { int n,m,b; while(scanf("%d %d %d",&n,&m,&b)!=EOF) { for(int i=1;i<=n;i++) scanf("%d %d",&a[i].x,&a[i].t); sort(a+1,a+1+n); memset(dp,50,sizeof(dp)); dp[0][n+1][0]=0; for(int k=0;k<n;k++) for(int i=0;i<=k;i++) { int tmp=max(dp[i][n+1-(k-i)][0]+a[i+1].x-a[i].x,a[i+1].t); dp[i+1][n+1-(k-i)][0]=min(dp[i+1][n+1-(k-i)][0],tmp); tmp=max(dp[i][n+1-(k-i)][0]+a[n+1-(k-i)-1].x-a[i].x,a[n+1-(k-i)-1].t); dp[i][n+1-(k-i)-1][1]=min(dp[i][n+1-(k-i)-1][1],tmp); tmp=max(dp[i][n+1-(k-i)][1]+a[n+1-(k-i)].x-a[n+1-(k-i)-1].x,a[n+1-(k-i)-1].t); dp[i][n+1-(k-i)-1][1]=min(dp[i][n+1-(k-i)-1][1],tmp); tmp=max(dp[i][n+1-(k-i)][1]+a[n+1-(k-i)].x-a[i+1].x,a[i+1].t); dp[i+1][n+1-(k-i)][0]=min(dp[i+1][n+1-(k-i)][0],tmp); } int ans=1e10; for(int i=0;i<=n;i++) { ans=min(ans,dp[i][i+1][0]+ff(b-a[i].x)); ans=min(ans,dp[i][i+1][1]+ff(b-a[i+1].x)); } cout<<ans<<endl; } return 0; }